4,008 research outputs found

    Age-related differences in adaptation during childhood: The influences of muscular power production and segmental energy flow caused by muscles

    Get PDF
    Acquisition of skillfulness is not only characterized by a task-appropriate application of muscular forces but also by the ability to adapt performance to changing task demands. Previous research suggests that there is a different developmental schedule for adaptation at the kinematic compared to the neuro-muscular level. The purpose of this study was to determine how age-related differences in neuro-muscular organization affect the mechanical construction of pedaling at different levels of the task. By quantifying the flow of segmental energy caused by muscles, we determined the muscular synergies that construct the movement outcome across movement speeds. Younger children (5-7 years; n = 11), older children (8-10 years; n = 8), and adults (22-31 years; n = 8) rode a stationary ergometer at five discrete cadences (60, 75, 90, 105, and 120 rpm) at 10% of their individually predicted peak power output. Using a forward dynamics simulation, we determined the muscular contributions to crank power, as well as muscular power delivered to the crank directly and indirectly (through energy absorption and transfer) during the downstroke and the upstroke of the crank cycle. We found significant age × cadence interactions for (1) peak muscular power at the hip joint [Wilks' Lambda = 0.441, F(8,42) = 2.65, p = 0.019] indicating that at high movement speeds children produced less peak power at the hip than adults, (2) muscular power delivered to the crank during the downstroke and the upstroke of the crank cycle [Wilks' Lambda = 0.399, F(8,42) = 3.07, p = 0.009] indicating that children delivered a greater proportion of the power to the crank during the upstroke when compared to adults, (3) hip power contribution to limb power [Wilks' Lambda = 0.454, F(8,42) = 2.54, p = 0.023] indicating a cadence-dependence of age-related differences in the muscular synergy between hip extensors and plantarflexors. The results demonstrate that in spite of a successful performance, children construct the task of pedaling differently when compared to adults, especially when they are pushed to their performance limits. The weaker synergy between hip extensors and plantarflexors suggests that a lack of inter-muscular coordination, rather than muscular power production per se, is a factor that limits children's performance ranges

    Making space for experiences

    Get PDF
    Leisure and retail providers need to understand the elements of the visitor experience and the way in which they evaluate their satisfaction. This article suggests a holistic prism model of the interaction between the management and the visitor in a leisure space. This is applied to a netnographic study of visitors to a folk festival to illustrate the interconnectiveness of the different attributes causing dissatisfaction. It found that the physical and operational attributes were evaluated not through a checklist of individual features but as hindrances to the visitor's desire to make best use of the time. Visitors also evaluated the experience in the light of their own values and concerns, passing judgement on the values communicated by the management. At the heart of the experience was the enjoyment of choosing from an abundant offer and discovering something new. The main attraction is often only the pretext for enjoying the company of friends so places to meet before and chill-out afterwards are vital to the experience. The distinctiveness of the setting, the food and drink can become the sensory cues which give the event or location its uniqueness. The challenge to retail and leisure organisations is to design these elements of a memorable experience into their offerings

    Enforced expression of PPP1R13L increases tumorigenesis and invasion through p53-dependent and p53-independent mechanisms.

    Get PDF
    PPP1R13L was initially identified as a protein that binds to the NF-[kappa]B subunit p65/RelA and inhibits its transcriptional activity. It also binds p53 and inhibits its action. One set of experimental findings based on over-expression of PPP1R13L indicates that PPP1R13L blocks apoptosis. Another set of experiments, based on endogenous production of PPP1R13L, suggests that the protein may sometimes be pro-apoptotic. We have used primary mouse embryonic fibroblasts (MEFs), dually transformed by H-ras and Adenovirus E1A and differing in their p53 status, to explore the effects of PPP1R13L over-expression, thus examining the ability of PPP1R13L to act as an oncoprotein. We found that over-expression of PPP1R13L strongly accelerated tumor formation by ras/E1A and also resulted in an increased metastatic potential of the tumors. PPP1R13L over-expressing cells were depleted for both p53 and active p65/RelA and we found that both p53 dependent and independent apoptosis pathways were regulated by PPP1R13L. Finally, studies with the proteasome inhibitor MG132 revealed that over-expression of PPP1R13L causes faster p53 degradation, a likely explanation for the depletion of p53. Taken together, our results show that increased levels of PPP1R13L can increase tumorigenesis and furthermore pinpoint PPP1R13L as a gene that influences metastasis

    Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate

    Full text link
    The H3+ molecular ion plays a fundamental role in interstellar chemistry, as it initiates a network of chemical reactions that produce many interstellar molecules. In dense clouds, the H3+ abundance is understood using a simple chemical model, from which observations of H3+ yield valuable estimates of cloud path length, density, and temperature. On the other hand, observations of diffuse clouds have suggested that H3+ is considerably more abundant than expected from the chemical models. However, diffuse cloud models have been hampered by the uncertain values of three key parameters: the rate of H3+ destruction by electrons, the electron fraction, and the cosmic-ray ionisation rate. Here we report a direct experimental measurement of the H3+ destruction rate under nearly interstellar conditions. We also report the observation of H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is already known. Taken together, these results allow us to derive the value of the third uncertain model parameter: we find that the cosmic-ray ionisation rate in this sightline is forty times faster than previously assumed. If such a high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres

    Halide substitution in Ca(BH4)2

    Get PDF
    Halide substitution in Ca(BH4)2 has been investigated in ball milled mixtures of Ca(BH4)2 and CaX2 (X \ubc F, Cl, Br) with different molar ratios. In situ synchrotron radiation powder X-ray diffraction measurements of Ca(BH4)2 + CaCl2 with 1 : 0.5, 1 : 1 and 1 : 2 molar ratios reveal that no substitution of Cl for BH4 occurs from the ball milling process. However, substitution readily occurs after the transitions from a- to b-Ca(BH4)2 and from orthorhombic to tetragonal CaCl2 upon heating above 250 C, which is evident from both contraction of the unit cell and changes in the relative Bragg peak intensities, in agreement with theoretical calculations. Rietveld analyses of the obtained b-Ca((BH4)1xClx)2 solid solutions indicate compositions from x \ubc 0 to 0.6, depending on the amount of CaCl2 in the parent mixtures. b-Ca((BH4)0.5Cl0.5)2 was investigated by differential scanning calorimetry and has a slightly higher decomposition temperature compared to pure Ca(BH4)2. No substitution with CaF2 or CaBr2 is observed

    Poroelastic Modelling of CSF circulation via the incorporation of experimentally derived microscale water transport properties

    Get PDF
    We outline how multicompartmental poroelasticity is applied to the study of dementia. We utilize a 3D version of our poroelastic code to investigate the effects within parenchymal tissue. This system is coupled with multiple pipelines within the VPH-DARE@IT project which account for patient/subject-specific boundary conditions in the arterial compartment, in addition to both an image segmentation-mesh and integrated cardiovascular system model pipeline respectively. This consolidated template allows for the extraction of boundary conditions to run CFD simulations for the ventricles. Finally, we outline some experimental results that will help inform the MPET system

    Probabilistic Graphs for Sensor Data-driven Modelling of Power Systems at Scale

    Full text link
    The growing complexity of the power grid, driven by increasing share of distributed energy resources and by massive deployment of intelligent internet-connected devices, requires new modelling tools for planning and operation. Physics-based state estimation models currently used for data filtering, prediction and anomaly detection are hard to maintain and adapt to the ever-changing complex dynamics of the power system. A data-driven approach based on probabilistic graphs is proposed, where custom non-linear, localised models of the joint density of subset of system variables can be combined to model arbitrarily large and complex systems. The graphical model allows to naturally embed domain knowledge in the form of variables dependency structure or local quantitative relationships. A specific instance where neural-network models are used to represent the local joint densities is proposed, although the methodology generalises to other model classes. Accuracy and scalability are evaluated on a large-scale data set representative of the European transmission grid

    Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    Get PDF
    Positive plant diversity-productivity relationships have been reported for experimental semi-natural grasslands (Cardinale et al. 2006; Hector et al. 1999; Tilman et al. 1996) as well as temporary agricultural grasslands (Frankow-Lindberg et al. 2009; Kirwan et al. 2007; Nyfeler et al. 2009; Picasso et al. 2008). Generally, these relationships are explained, on the one hand, by niche differentiation and facilitation (Hector et al. 2002; Tilman et al. 2002) and, on the other hand, by greater probability of including a highly productive plant species in high diversity plots (Huston 1997). Both explanations accept that diversity is significant because species differ in characteristics, such as root architecture, nutrient acquisition and water use efficiency, to name a few, resulting in composition and diversity being important for improved productivity and resource use (Naeem et al. 1994; Tilman et al. 2002). Plant diversity is generally low in temporary agricultural grasslands grown for ruminant fodder production. Grass in pure stands is common, but requires high nitrogen (N) inputs. In terms of N input, two-species grass-legume mixtures are more sustainable than grass in pure stands and consequently dominate low N input grasslands (Crews and Peoples 2004; Nyfeler et al. 2009; Nyfeler et al. 2011). In temperate grasslands, N is often the limiting factor for productivity (Whitehead 1995). Plant available soil N is generally concentrated in the upper soil layers, but may leach to deeper layers, especially in grasslands that include legumes (Scherer-Lorenzen et al. 2003) and under conditions with surplus precipitation (Thorup-Kristensen 2006). To improve soil N use efficiency in temporary grasslands, we propose the addition of deep-rooting plant species to a mixture of perennial ryegrass and white clover, which are the most widespread forage plant species in temporary grasslands in a temperate climate (Moore 2003). Perennial ryegrass and white clover possess relatively shallow root systems (Kutschera and Lichtenegger 1982; Kutschera and Lichtenegger 1992) with effective rooting depths of <0.7 m on a silt loamy site (Pollock and Mead 2008). Grassland species, such as lucerne and chicory, grow their tap-roots into deep soil layers and exploit soil nutrients and water in soil layers that the commonly grown shallow-rooting grassland species cannot reach (Braun et al. 2010; Skinner 2008). Chicory grown as a catch crop after barley reduced the inorganic soil N down to 2.5 m depth during the growing season, while perennial ryegrass affected the inorganic soil N only down to 1 m depth (Thorup-Kristensen 2006). Further, on a Wakanui silt loam in New Zealand chicory extracted water down to 1.9 m and lucerne down to 2.3 m soil depth, which resulted in greater herbage yields compared with a perennial ryegrass-white clover mixture, especially for dryland plots (Brown et al. 2005). There is little information on both the ability of deep- and shallow-rooting grassland species to access soil N from different vertical soil layers and the relation of soil N-access and herbage yield in temporary agricultural grasslands. Therefore, the objective of the present work was to test the hypotheses 1) that a mixture comprising both shallow- and deep-rooting plant species has greater herbage yields than a shallow-rooting binary mixture and pure stands, 2) that deep-rooting plant species (chicory and lucerne) are superior in accessing soil N from 1.2 m soil depth compared with shallow-rooting plant species, 3) that shallow-rooting plant species (perennial ryegrass and white clover) are superior in accessing soil N from 0.4 m soil depth compared with deep-rooting plant species, 4) that a mixture of deep- and shallow-rooting plant species has greater access to soil N from three soil layers compared with a shallow-rooting two-species mixture and that 5) the leguminous grassland plants, lucerne and white clover, have a strong impact on grassland N acquisition, because of their ability to derive N from the soil and the atmosphere
    corecore