17,472 research outputs found

    Bogoliubov transformations and exact isolated solutions for simple non-adiabatic Hamiltonians

    Get PDF
    We present a new method for finding isolated exact solutions of a class of non-adiabatic Hamiltonians of relevance to quantum optics and allied areas. Central to our approach is the use of Bogoliubov transformations of the bosonic fields in the models. We demonstrate the simplicity and efficiency of this method by applying it to the Rabi Hamiltonian.Comment: LaTeX, 16 pages, 1 figure. Minor additions and journal re

    Unambiguous determination of gravitational waveforms from binary black hole mergers

    Full text link
    Gravitational radiation is properly defined only at future null infinity (\scri), but in practice it is estimated from data calculated at a finite radius. We have used characteristic extraction to calculate gravitational radiation at \scri for the inspiral and merger of two equal mass non-spinning black holes. Thus we have determined the first unambiguous merger waveforms for this problem. The implementation is general purpose, and can be applied to calculate the gravitational radiation, at \scri, given data at a finite radius calculated in another computation.Comment: 4 pages, 3 figures, published versio

    The Gallic Empire

    Get PDF
    Not Availabl

    Anomaly Detection for Science DMZs Using System Performance Data

    Get PDF
    Science DMZs are specialized networks that enable large-scale distributed scientific research, providing efficient and guaranteed performance while transferring large amounts of data at high rates. The high-speed performance of a Science DMZ is made viable via data transfer nodes (DTNs), therefore they are a critical point of failure. DTNs are usually monitored with network intrusion detection systems (NIDS). However, NIDS do not consider system performance data, such as network I/O interrupts and context switches, which can also be useful in revealing anomalous system performance potentially arising due to external network based attacks or insider attacks. In this paper, we demonstrate how system performance metrics can be applied towards securing a DTN in a Science DMZ network. Specifically, we evaluate the effectiveness of system performance data in detecting TCP-SYN flood attacks on a DTN using DBSCAN (a density-based clustering algorithm) for anomaly detection. Our results demonstrate that system interrupts and context switches can be used to successfully detect TCP-SYN floods, suggesting that system performance data could be effective in detecting a variety of attacks not easily detected through network monitoring alone

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (k≀mk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit m→∞m \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Static NLO susceptibilities: testing approximation schemes against exact results

    Get PDF
    The reliability of the approximations commonly adopted in the calculation of static optical (hyper)polarizabilities is tested against exact results obtained for an interesting toy-model. The model accounts for the principal features of typical nonlinear organic materials with mobile electrons strongly coupled to molecular vibrations. The approximations introduced in sum over states and finite field schemes are analyzed in detail. Both the Born-Oppenheimer and the clamped nucleus approximations turn out to be safe for molecules, whereas for donor-acceptor charge transfer complexes deviations from adiabaticity are expected. In the regime of low vibrational frequency, static susceptibilities are strongly dominated by the successive derivatives of the potential energy and large vibrational contributions to hyperpolarizabilities are found. In this regime anharmonic corrections to hyperpolarizabilities are very large, and the harmonic approximation, exact for the linear polarizability, turns out totally inadequate for nonlinear responses. With increasing phonon frequency the role of vibrations smoothly decreases, until, in the antiadiabatic (infinite vibrational frequency) regime, vibrations do not contribute anymore to static susceptibilities, and the purely electronic responses are regained.Comment: 9 pages, including 3 figure

    General relativistic null-cone evolutions with a high-order scheme

    Full text link
    We present a high-order scheme for solving the full non-linear Einstein equations on characteristic null hypersurfaces using the framework established by Bondi and Sachs. This formalism allows asymptotically flat spaces to be represented on a finite, compactified grid, and is thus ideal for far-field studies of gravitational radiation. We have designed an algorithm based on 4th-order radial integration and finite differencing, and a spectral representation of angular components. The scheme can offer significantly more accuracy with relatively low computational cost compared to previous methods as a result of the higher-order discretization. Based on a newly implemented code, we show that the new numerical scheme remains stable and is convergent at the expected order of accuracy.Comment: 24 pages, 3 figure

    Initial data transients in binary black hole evolutions

    Full text link
    We describe a method for initializing characteristic evolutions of the Einstein equations using a linearized solution corresponding to purely outgoing radiation. This allows for a more consistent application of the characteristic (null cone) techniques for invariantly determining the gravitational radiation content of numerical simulations. In addition, we are able to identify the {\em ingoing} radiation contained in the characteristic initial data, as well as in the initial data of the 3+1 simulation. We find that each component leads to a small but long lasting (several hundred mass scales) transient in the measured outgoing gravitational waves.Comment: 18 pages, 4 figure

    DC-Prophet: Predicting Catastrophic Machine Failures in DataCenters

    Full text link
    When will a server fail catastrophically in an industrial datacenter? Is it possible to forecast these failures so preventive actions can be taken to increase the reliability of a datacenter? To answer these questions, we have studied what are probably the largest, publicly available datacenter traces, containing more than 104 million events from 12,500 machines. Among these samples, we observe and categorize three types of machine failures, all of which are catastrophic and may lead to information loss, or even worse, reliability degradation of a datacenter. We further propose a two-stage framework-DC-Prophet-based on One-Class Support Vector Machine and Random Forest. DC-Prophet extracts surprising patterns and accurately predicts the next failure of a machine. Experimental results show that DC-Prophet achieves an AUC of 0.93 in predicting the next machine failure, and a F3-score of 0.88 (out of 1). On average, DC-Prophet outperforms other classical machine learning methods by 39.45% in F3-score.Comment: 13 pages, 5 figures, accepted by 2017 ECML PKD
    • 

    corecore