21 research outputs found

    Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Get PDF
    Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis) or “negative” (silencing) mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1). Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation

    Structural and functional studies of the supramolecular species of mitochondrial ATPsynthase and its inhibitory subunit IF1

    No full text
    LE KREMLIN-B.- PARIS 11-BU MĂ©d (940432101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Characterization of oligomeric forms from mammalian FoF1ATPsynthase by BN-PAGE: the role of detergents

    No full text
    It is now widely accepted that F0F1ATPsynthase is present in membrane, beside as monomers, in homo-dimeric and higher homo-oligomeric forms, which probably play critical roles in determining mitochondrial morphology. One-step mild detergent extraction followed by blue native electrophoresis (BN-PAGE) is a very interesting tool for studying the native membrane protein assemblies which can be associated with second/third-dimensional SDS-PAGE, immunoblotting, in-gel enzyme activity staining and mass spectrometry analyses. By combining these techniques, we resolved monomers and higher oligomeric forms of ATPsynthase from bovine heart mitochondria. However, a critical point is the choice of the detergents, which strongly influence the protein pattern of BN-PAGE. By using Triton X-100 we obtained that, in spite of the same subunit composition, monomers have a much lower specific activity than dimers and the two forms have a different pattern of tyrosine phosphorylation, suggesting that monomers and dimers are functionally distinct in membrane. In addition, enzyme self-association appeared to occur independently from the binding to ATPsynthase of the inhibitor protein IF1. Dodecylmaltoside was optimal to extract the enzyme from single biopsy samples, allowing us to demonstrate that IF1 plays a central role in regulating the enzyme activity in heart in vivo. Only low concentration of digitonin maintained significant amounts of ATPsynthase oligomers, which seemed to retain intact their native catalytic properties

    Proteomic analysis of F1F0-ATP synthase super-assembly in mitochondria of cardiomyoblasts undergoing differentiation to the cardiac lineage

    Get PDF
    AbstractMitochondria are essential organelles with multiple functions, especially in energy metabolism. An increasing number of data highlighted their role for cellular differentiation processes. We investigated differences in ATP synthase supra-molecular organization occurring in H9c2 cardiomyoblasts in the course of cardiac-like differentiation, along with ATP synthase biogenesis and maturation of mitochondrial cristae morphology. Using BN-PAGE analysis combined with one-step mild detergent extraction from mitochondria, a significant increase in dimer/monomer ratio was observed, indicating a distinct rise in the stability of the enzyme super-assembly. Remarkably, sub-stoichiometric mean values for ATP synthase subunit e were determined in both parental and cardiac-like H9c2 by an MS-based quantitative proteomics approach. This indicates a similar high proportion of complex molecules lacking subunit e in both cell types, and suggests a minor contribution of this component in the observed changes. 2D BN-PAGE/immunoblotting analysis and MS/MS analysis on single BN-PAGE band showed that the amount of inhibitor protein IF1 bound within the ATP synthase complexes increased in cardiac-like H9c2 and appeared greater in the dimer. In concomitance, a consistent improvement of enzyme activity, measured as both ATP synthesis and ATP hydrolysis rate, was observed, despite the increase of bound IF1 evocative of a greater inhibitory effect on the enzyme ATPase activity. The results suggest i) a role for IF1 in promoting dimer stabilization and super-assembly in H9c2 with physiological IF1 expression levels, likely unveiled by the fact that the contacts through accessory subunit e appear to be partially destabilized, ii) a link between dimer stabilization and enzyme activation
    corecore