1,278 research outputs found
Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites
Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly
Effect of fiber-matrix debonding on notched strength of titanium metal matrix composites
Two specimen configuration of a (0/90)2s SCS-6/Ti-15-3 laminate were tested and analyzed: a center hole (CH) specimen and a double edge notch (DEN) specimen. The two specimen configurations failed at similar stress levels. Two analytical techniques, a 3-D finite-element analysis and a macro-micromechanical analysis were used to predict the overall stress-deformation behavior and the notch-tip fiber-matrix interface stresses in both configurations
Fatigue damage in cross-ply titanium metal matrix composites containing center holes
The development of fatigue damage in (0/90) sub SCS-6/TI-15-3 laminates containing center holes was studied. Stress levels required for crack initiation in the matrix were predicted using an effective strain parameter and compared to experimental results. Damage progression was monitored at various stages of fatigue loading. In general, a saturated state of damage consisting of matrix cracks and fiber matrix debonding was obtained which reduced the composite modulus. Matrix cracks were bridged by the 0 deg fibers. The fatigue limit (stress causing catastrophic fracture of the laminates) was also determined. The static and post fatigue residual strengths were accurately predicted using a three dimensional elastic-plastic finite element analysis. The matrix damage that occurred during fatigue loading significantly reduced the notched strength
Experimental and analytical investigation of the fracture processes of boron/aluminum laminates containing notches
Experimental results for five laminate orientations of boron/aluminum composites containing either circular holes or crack-like slits are presented. Specimen stress-strain behavior, stress at first fiber failure, and ultimate strength were determined. Radiographs were used to monitor the fracture process. The specimens were analyzed with a three-dimensional elastic-elastic finite-element model. The first fiber failures in notched specimens with laminate orientation occurred at or very near the specimen ultimate strength. For notched unidirectional specimens, the first fiber failure occurred at approximately one-half of the specimen ultimate strength. Acoustic emission events correlated with fiber breaks in unidirectional composites, but did not for other laminates. Circular holes and crack-like slits of the same characteristic length were found to produce approximately the same strength reduction. The predicted stress-strain responses and stress at first fiber failure compared very well with test data for laminates containing 0 deg fibers
Antenna pattern shaping, sensing, and steering study Final report
Design of steerable satellite antenna with beam pattern sensing syste
Microlensing of the Lensed Quasar SDSS0924+0219
We analyze V, I and H band HST images and two seasons of R-band monitoring
data for the gravitationally lensed quasar SDSS0924+0219. We clearly see that
image D is a point-source image of the quasar at the center of its host galaxy.
We can easily track the host galaxy of the quasar close to image D because
microlensing has provided a natural coronograph that suppresses the flux of the
quasar image by roughly an order of magnitude. We observe low amplitude,
uncorrelated variability between the four quasar images due to microlensing,
but no correlated variations that could be used to measure a time delay. Monte
Carlo models of the microlensing variability provide estimates of the mean
stellar mass in the lens galaxy (0.02 Msun < M < 1.0 Msun), the accretion disk
size (the disk temperature is 5 x 10^4 K at 3.0 x 10^14 cm < rs < 1.4 x 10^15
cm), and the black hole mass (2.0 x 10^7 Msun < MBH \eta_{0.1}^{-1/2}
(L/LE)^{1/2} < 3.3 x 10^8 Msun), all at 68% confidence. The black hole mass
estimate based on microlensing is consistent with an estimate of MBH = 7.3 +-
2.4 x 10^7 Msun from the MgII emission line width. If we extrapolate the
best-fitting light curve models into the future, we expect the the flux of
images A and B to remain relatively stable and images C and D to brighten. In
particular, we estimate that image D has a roughly 12% probability of
brightening by a factor of two during the next year and a 45% probability of
brightening by an order of magnitude over the next decade.Comment: v.2 incorporates referee's comments and corrects two errors in the
original manuscript. 28 pages, 10 figures, published in Ap
Recommended from our members
The technology of ICRF systems
The technology of ICRF systems has made substantial gains in the past few years. The total power levels have increased from the 5-MW level to greater than 20 MW; the pulse lengths have increased from the 100-msec level to 30 seconds. Recently, fast wave current drive (FWCD) has been demonstrated using phased arrays of ICRF antennas. In order to achieve such large gains, substantial changes and improvements were needed in the level of design analysis, fabrication techniques, and system controls
A Comprehensive GC–MS Sub-Microscale Assay for Fatty Acids and its Applications
Fatty acid analysis is essential to a broad range of applications including those associated with the nascent algal biofuel and algal bioproduct industries. Current fatty acid profiling methods require lengthy, sequential extraction and transesterification steps necessitating significant quantities of analyte. We report the development of a rapid, microscale, single-step, in situ protocol for GC–MS lipid analysis that requires only 250 μg dry mass per sample. We furthermore demonstrate the broad applications of this technique by profiling the fatty acids of several algal species, small aquatic organisms, insects and terrestrial plant material. When combined with fluorescent techniques utilizing the BODIPY dye family and flow cytometry, this micro-assay serves as a powerful tool for analyzing fatty acids in laboratory and field collected samples, for high-throughput screening, and for crop assessment. Additionally, the high sensitivity of the technique allows for population analyses across a wide variety of taxa
- …