171 research outputs found

    Experimental investigation of interface states and photovoltaic effects on the scanning capacitance microscopy measurement for p-n junction dopant profiling

    Get PDF
    Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics

    Influence of Edge Effects on Laser-Induced Surface Displacement of Opaque Materials by Photothermal Interferometry

    Get PDF
    We demonstrate the influence of edge effects on the photothermal-induced phase shift measured by a homodyne quadrature laser interferometer and compare the experiments with rigorous theoretical descriptions of thermoelastic surface displacement of metals. The finite geometry of the samples is crucial in determining how the temperature is distributed across the material and how this affects the interferometer phase shift measurements. The optical path change due to the surface thermoelastic deformation and thermal lens in the surrounding air is decoded from the interferometric signal using analytical and numerical tools. The boundary/edge effects are found to be relevant to properly describe the interferometric signals. The tools developed in this study provide a framework for the study of finite size effects in heat transport in opaque materials and are applicable to describe not only the phase shift sensed by the interferometer but also to contribute to the photothermal-based technologies employing similar detection mechanisms

    METSTOR: A GIS to look for potential CO2 storage zones in France

    Get PDF
    AbstractThe METSTOR project offers a methodology to look for potentially interesting CO2 storage areas in France at the initial stage, before the “site selection” step. Our tool, embodied in a Geographic Information System, is based on an interactive map of CO2 storage capacities. Other relevant information layers are included. The geographic layers are complemented with a series of online technical notices. It seems to be the first open online GIS that offers policy makers, businesses and the public at large an integrated access to that necessary information. Our prototype, limited mainly to the Paris Basin, is released online at www.metstor.fr

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons

    Full text link
    To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed PANDA detector is a state-of-the art internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range. This report presents a summary of the physics accessible at PANDA and what performance can be expected.Comment: 216 page

    Technical Design Report for the: PANDA Micro Vertex Detector

    Full text link
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.Comment: 189 pages, 225 figures, 41 table
    corecore