9,350 research outputs found
Modulated phases in magnetic models frustrated by long-range interactions
We study an Ising model in one dimension with short range ferromagnetic and
long range (power law) antiferromagnetic interactions. We show that the zero
temperature phase diagram in a (longitudinal) field H involves a sequence of up
and down domains whose size varies continuously with H, between -H_c and H_c
which represent the edge of the ferromagnetic up and down phases. The
implications of long range interaction in many body systems are discussed.Comment: 5 pages, 3 figure
Modulus, strength and thermal exposure studies of FP-Al2O3/aluminum and FP-Al2O3/magnesium composites
The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites
Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites
The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks
Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids
We investigate the disorder-driven phase transition from a fractional quantum
Hall state to an Anderson insulator using quantum entanglement methods. We find
that the transition is signaled by a sharp increase in the sensitivity of a
suitably averaged entanglement entropy with respect to disorder -- the
magnitude of its disorder derivative appears to diverge in the thermodynamic
limit. We also study the level statistics of the entanglement spectrum as a
function of disorder. However, unlike the dramatic phase-transition signal in
the entanglement entropy derivative, we find a gradual reduction of level
repulsion only deep in the Anderson insulating phase.Comment: 8 pages, 8 figures, including the supplemental material, published in
PRL as an Editors' Suggestio
"Rare" Fluctuation Effects in the Anderson Model of Localization
We discuss the role of rare fluctuation effects in quantum condensed matter
systems. In particular, we present recent numerical results of the effect of
resonant states in Anderson's original model of electron localization. We find
that such resonances give rise to anomalous behavior of eigenstates not just
far in the Lifshitz tail, but rather for a substantial fraction of eigenstates,
especially for intermediate disorder. The anomalous behavior includes
non-analyticity in various properties as a characteristic. The effect of
dimensionality on the singularity, which is present in all dimensions, is
described, and the behavior for bounded and unbounded disorder is contrasted
Monte Carlo Simulations of Doped, Diluted Magnetic Semiconductors - a System with Two Length Scales
We describe a Monte Carlo simulation study of the magnetic phase diagram of
diluted magnetic semiconductors doped with shallow impurities in the low
concentration regime. We show that because of a wide distribution of
interaction strengths, the system exhibits strong quantum effects in the
magnetically ordered phase. A discrete spin model, found to closely approximate
the quantum system, shows long relaxation times, and the need for specialized
cluster algorithms for updating spin configurations. Results for a
representative system are presented.Comment: 12 pages, latex, 7 figures; submitted to International Journal of
Modern Physics C, Proceedings of the U.S.-Japan Bilateral Seminar:
Understanding and Conquering Long Time Scales in Computer Simulation
- …