11 research outputs found

    Implication of long-distance regulation of the HOXA cluster in a patient with postaxial polydactyly

    Get PDF
    Apparently balanced chromosomal inversions may lead to disruption of developmentally important genes at the breakpoints of the inversion, causing congenital malformations. Characterization of such inversions may therefore lead to new insights in human development. Here, we report on a de novo inversion of chromosome 7 (p15.2q36.3) in a patient with postaxial polysyndactyly. The breakpoints do not disrupt likely candidate genes for the limb phenotype observed in the patient. However, on the p-arm the breakpoint separates the HOXA cluster from a gene desert containing several conserved noncoding elements, suggesting that a disruption of a cis-regulatory circuit of the HOXA cluster could be the underlying cause of the phenotype in this patient

    Overexpression of Full-Length ETV1 Transcripts in Clinical Prostate Cancer Due to Gene Translocation

    Get PDF
    ETV1 is overexpressed in a subset of clinical prostate cancers as a fusion transcript with many different partners. However, ETV1 can also be overexpressed as a full-length transcript. Full-length ETV1 protein functions differently from truncated ETV1 produced by fusion genes. In this study we describe the genetic background of full-length ETV1 overexpression and the biological properties of different full-length ETV1 isoforms in prostate cancer. Break-apart FISH showed in five out of six patient samples with overexpression of full-length ETV1 a genomic rearrangement of the gene, indicating frequent translocation. We were able to study the rearrangements in more detail in two tumors. In the first tumor 5′-RACE on cDNA showed linkage of the complete ETV1 transcript to the first exon of a prostate-specific two exon ncRNA gene that maps on chromosome 14 (EST14). This resulted in the expression of both full-length ETV1 transcripts and EST14-ETV1 fusion transcripts. In chromosome spreads of a xenograft derived from the second prostate cancer we observed a complex ETV1 translocation involving a chromosome 7 fragment that harbors ETV1 and fragments of chromosomes 4 and 10. Further studies revealed the overexpression of several different full-length transcripts, giving rise to four protein isoforms with different N-terminal regions. Even the shortest isoform synthesized by full-length ETV1 stimulated in vitro anchorage-independent growth of PNT2C2 prostate cells. This contrasts the lack of activity of even shorter N-truncated ETV1 produced by fusion transcripts. Our findings that in clinical prostate cancer overexpression of full-length ETV1 is due to genomic rearrangements involving different chromosomes and the identification of a shortened biologically active ETV1 isoform are highly relevant for understanding the mechanism of ETV1 function in prostate cancer

    5q11.2 deletion in a patient with tracheal agenesis

    No full text
    Tracheal agenesis (TA) is a rare congenital anomaly of the respiratory tract. Many patients have associated anomalies, suggesting a syndromal phenotype. In a cohort of 12 patients, we aimed to detect copy number variations. In addition to routine cytogenetic analysis, we applied oligonucleotide array comparative genomic hybridization. Our patient cohort showed various copy number variations, of which many were parentally inherited variants. One patient had, in addition to an inherited 16p12.1 deletion, a 3.6 Mb deletion on chromosomal locus 5q11.2. This patient had a syndromic phenotype, including vertebral, anal, cardiovascular and tracheo-oesophageal associated anomalies, and other foregut-related anomalies, such as cartilage rings in the oesophagus and an aberrant right bronchus. No common deletions or duplications are found in our cohort, suggesting that TA is a genetically heterogeneous disorder

    A point mutation in the pre-ZRS disrupts sonic hedgehog expression in the limb bud and results in triphalangeal thumb-polysyndactyly syndrome

    No full text
    Item does not contain fulltextPURPOSE: The zone of polarizing activity regulatory sequence (ZRS) is an enhancer that regulates sonic hedgehog during embryonic limb development. Recently, mutations in a noncoding evolutionary conserved sequence 500 bp upstream of the ZRS, termed the pre-ZRS (pZRS), have been associated with polydactyly in dogs and humans. Here, we report the first case of triphalangeal thumb-polysyndactyly syndrome (TPT-PS) to be associated with mutations in this region and show via mouse enhancer assays how this mutation leads to ectopic expression throughout the developing limb bud. METHODS: We used linkage analysis, whole-exome sequencing, Sanger sequencing, fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, single-nucleotide polymorphism array, and a mouse transgenic enhancer assay. RESULTS: Ten members of a TPT-PS family were included in this study. The mutation was linked to chromosome 7q36 (LOD score 3.0). No aberrations in the ZRS could be identified. A point mutation in the pZRS (chr7:156585476G>C; GRCh37/hg19) was detected in all affected family members. Functional characterization using a mouse transgenic enhancer essay showed extended ectopic expression dispersed throughout the entire limb bud (E11.5). CONCLUSION: Our work describes the first mutation in the pZRS to be associated with TPT-PS and provides functional evidence that this mutation leads to ectopic expression of this enhancer within the developing limb

    Vitamin B12 deficiency

    No full text
    corecore