11 research outputs found

    Discontinuation of Pneumocystis jirovecii Pneumonia Prophylaxis with CD4 Count <200 Cells/µL and Virologic Suppression: A Systematic Review

    Get PDF
    HIV viral load (VL) is currently not part of the criteria for Pneumocystis jirovecii pneumonia (PCP) prophylaxis discontinuation, but suppression of plasma viremia with antiretroviral therapy may allow for discontinuation of PCP prophylaxis even with CD4 count <200 cells/µL.A systematic review was performed to determine the incidence of PCP in HIV-infected individuals with CD4 count <200 cells/µL and fully suppressed VL on antiretroviral therapy but not receiving PCP prophylaxis.Four articles examined individuals who discontinued PCP prophylaxis with CD4 count <200 cells/µL in the context of fully suppressed VL on antiretroviral therapy. The overall incidence of PCP was 0.48 cases per 100 person-years (PY) (95% confidence interval (CI) (0.06-0.89). This was lower than the incidence of PCP in untreated HIV infection (5.30 cases/100 PY, 95% CI 4.1-6.8) and lower than the incidence in persons with CD4 count <200 cells/µL, before the availability of highly active antiretroviral therapy (HAART), who continued prophylaxis (4.85/100 PY, 95% CI 0.92-8.78). In one study in which individuals were stratified according to CD4 count <200 cells/µL, there was a greater risk of PCP with CD4 count ≤100 cells/µL compared to 101-200 cells/µL.Primary PCP prophylaxis may be safely discontinued in HIV-infected individuals with CD4 count between 101-200 cells/µL provided the VL is fully suppressed on antiretroviral therapy. However, there are inadequate data available to make this recommendation when the CD4 count is ≤100 cells/µL. A revision of guidelines on primary PCP prophylaxis to include consideration of the VL is merited

    Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection.

    Full text link
    BACKGROUND: We conducted subanalyses of the combined results of the Maraviroc versus Optimized Therapy in Viremic Antiretroviral Treatment-Experienced Patients (MOTIVATE) 1 and MOTIVATE 2 studies to better characterize the efficacy and safety of maraviroc in key subgroups of patients. METHODS: We analyzed pooled data from week 48 from the two studies according to sex, race or ethnic group, clade, CC chemokine receptor 5 (CCR5) delta32 genotype, viral load at the time of screening, the use or nonuse of enfuvirtide in optimized background therapy (OBT), the baseline CD4 cell count, the number of active antiretroviral drugs coadministered, the first use of selected background agents, and tropism at baseline. Changes in viral tropism and the CD4 count at treatment failure were evaluated. Data on aminotransferase levels in patients coinfected with hepatitis B virus (HBV) or hepatitis C virus (HCV) were also analyzed. RESULTS: A treatment benefit of maraviroc plus OBT over placebo plus OBT was shown in all subgroups, including patients with a low CD4 cell count at baseline, those with a high viral load at screening, and those who had not received active agents in OBT. Analyses of the virologic response according to the first use of selected background drugs showed the additional benefit of adding a potent new drug to maraviroc at the initiation of maraviroc therapy. More patients in whom maraviroc failed had a virus binding to the CXC chemokine receptor 4 (CXCR4) at failure, but there was no evidence of a decrease in the CD4 cell count at failure in such patients as compared with those in whom placebo failed. Subanalyses involving patients coinfected with HBV or HCV revealed no evidence of excess hepatotoxic effects as compared with baseline. CONCLUSIONS: Subanalyses of pooled data from week 48 indicate that maraviroc provides a valuable treatment option for a wide spectrum of patients with R5 HIV-1 infection who have been treated previously. (ClinicalTrials.gov numbers, NCT00098306 and NCT00098722.
    corecore