41 research outputs found

    Dysaesthesia in the mental nerve distribution triggered by a foreign body: a case report

    Get PDF
    INTRODUCTION: Foreign bodies' entrapments in the mandibular and submandibular regions are quite common. CASE PRESENTATION: We report an unusual case of foreign body (amalgam filling) entrapment over the mental foramen causing dysaesthesia in the distribution of the mental nerve. An interesting sign was blue discoloration of the overlaying oral mucosa which was interpreted as amalgam tattooing. CONCLUSION: Surgical removal of the foreign object eliminated the reported symptoms

    Comprehensive dental management in a Hallermann–Streiff syndrome patient with unusual radiographic appearance of teeth

    Get PDF
    Hallermann–Streiff syndrome (HSS) is a genetic disorder characterized by proportionate dwarfism, birdlike facies, hypotrichosis, skin atrophy, dyscephaly, bilateral microphthalmia, congenital cataracts, a narrow, weak, beaked nose, a hypoplastic mandible, and orodental anomalies. Occurrence is sporadic and distinct patterns of inheritance have not been found. This case report describes the dental management of a 3‑year‑old girl patient with HSS, who had unusual radiographic appearance of teeth. Furthermore, dental treatments and a 30‑month follow‑up period of the patient with this rare tooth structure malformation have been presented.Keywords: Dental anomalies, Hallermann–Streiff syndrome, orofacial characteristic

    Deconstructing Mus gemischus: advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse

    No full text
    The laboratory mouse is an artificial construct with a complex relationship to its natural ancestors. In 2002, the mouse became the first mammalian model organism with a reference genome. Importantly, the mouse genome sequence was assembled from data on a single inbred laboratory strain, C57BL/6. Several large-scale genetic variant discovery efforts have been conducted, resulting in a catalog of tens of millions of SNPs and structural variants. High-density genotyping arrays covering a subset of those variants have been used to produce hundreds of millions of genotypes in laboratory stocks and a small number of wild mice. These landmark resources now enable us to determine relationships among laboratory mice, assign local ancestry at fine scale, resolve important controversies, and identify a new set of challenges—most importantly, the troubling scarcity of genetic data on the very natural populations from which the laboratory mouse was derived. Our aim with this review is to provide the reader with an historical context for the mouse as a model organism and to explain how practical decisions made in the past have influenced both the architecture of the laboratory mouse genome and the design and execution of current large-scale resources. We also provide examples on how the accomplishments of the past decade can be used by researchers to streamline the use of mice in their experiments and correctly interpret results. Finally, we propose future steps that will enable the mouse community to extend its successes in the decade to come
    corecore