20 research outputs found

    Antiferromagnetic spintronics

    Get PDF
    Antiferromagnetic materials are magnetic inside, however, the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets invisible on the outside. It also implies that if information was stored in antiferromagnetic moments it would be insensitive to disturbing external magnetic fields, and the antiferromagnetic element would not affect magnetically its neighbors no matter how densely the elements were arranged in a device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. The outstanding question is how to efficiently manipulate and detect the magnetic state of an antiferromagnet. In this article we give an overview of recent works addressing this question. We also review studies looking at merits of antiferromagnetic spintronics from a more general perspective of spin-ransport, magnetization dynamics, and materials research, and give a brief outlook of future research and applications of antiferromagnetic spintronics.Comment: 13 pages, 7 figure

    Spin transport and spin torque in antiferromagnetic devices

    Get PDF
    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices

    Silencing of SH-PTP2 defines a crucial role in the inactivation of epidermal growth factor receptor by 5-aminosalicylic acid in colon cancer cells

    No full text
    Recent studies have suggested that 5-aminosalicylic acid (5-ASA) inhibits colorectal cancer (CRC) development. However, the mechanism underlying the antineoplastic effect of 5-ASA remains unknown. We here examined the effect of 5-ASA on epidermal growth factor receptor (EGFR) activation, a pathway that triggers mitogenic signals in CRC cells. We show that 5-ASA inhibits EGFR activation, through a mechanism that does not rely on CRC cell death induction. 5-ASA enhances the activity, but not expression, of phosphorylated (p)-EGFR-targeting phosphatases (PTPs), and treatment of cells with PTP inhibitors abrogates the 5-ASA-mediated EGFR dephosphorylation. Both SH-PTP1 and SH-PTP2 interact with EGFR upon 5-ASA treatment. However, knockdown of SH-PTP2 but not SH-PTP1 by small interference RNAs prevents the 5-ASA-induced EGFR dephosphorylation. Finally, we show that 5-ASA attenuates p-EGFR in ex vivo organ cultures of CRC explants. Data indicate that 5-ASA disrupts EGFR signalling by enhancing SH-PTP2 activity, and suggest a mechanism by which 5-ASA interferes with CRC growth
    corecore