141 research outputs found

    Quasi-Normal Modes of Stars and Black Holes

    Get PDF
    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in Relativity

    Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions

    Get PDF
    Viral production from infected cells can occur continuously or in a burst that generally kills the cell. For HIV infection, both modes of production have been suggested. Standard viral dynamic models formulated as sets of ordinary differential equations can not distinguish between these two modes of viral production, as the predicted dynamics is identical as long as infected cells produce the same total number of virions over their lifespan. Here we show that in stochastic models of viral infection the two modes of viral production yield different early term dynamics. Further, we analytically determine the probability that infections initiated with any number of virions and infected cells reach extinction, the state when both the population of virions and infected cells vanish, and show this too has different solutions for continuous and burst production. We also compute the distributions of times to establish infection as well as the distribution of times to extinction starting from both a single virion as well as from a single infected cell for both modes of virion production

    Reduction of metastasis using a non-volatile buffer

    Get PDF
    The tumor microenvironment is acidic as a consequence of upregulated glycolysis and poor perfusion and this acidity, in turn, promotes invasion and metastasis. We have recently demonstrated that chronic consumption of sodium bicarbonate increased tumor pH and reduced spontaneous and experimental metastases. This occurred without affecting systemic pH, which was compensated. Additionally, these prior data did not rule out the possibility that bicarbonate was working though effects on carbonic anhydrase, and not as a buffer per se. Here, we present evidence that chronic ingestion of a non-volatile buffer, 2-imidazole-1-yl-3-ethoxycarbonylpropionic acid (IEPA) with a pKa of 6.9 also reduced metastasis in an experimental PC3M prostate cancer mouse model. Animals (nΒ =Β 30) were injected with luciferase expressing PC3M prostate cancer cells either subcutaneously (s.c., nΒ =Β 10) or intravenously (i.v., nΒ =Β 20). Four days prior to inoculations, half of the animals for each experiment were provided drinking water containing 200Β mM IEPA buffer. Animals were imaged weekly to follow metastasis, and these data showed that animals treated with IEPA had significantly fewer experimental lung metastasis compared to control groups (PΒ <Β 0.04). Consistent with prior work, the pH of treated tumors was elevated compared to controls. IEPA is observable by in vivo magnetic resonance spectroscopy and this was used to measure the presence of IEPA in the bladder, confirming that it was orally available. The results of this study indicate that metastasis can be reduced by non-volatile buffers as well as bicarbonate and thus the effect appears to be due to pH buffering per se

    Limited Neutralizing Antibody Specificities Drive Neutralization Escape in Early HIV-1 Subtype C Infection

    Get PDF
    We previously showed that HIV-1 subtype C viruses elicit potent but highly type-specific neutralizing antibodies (nAb) within the first year of infection. In order to determine the specificity and evolution of these autologous nAbs, we examined neutralization escape in four individuals whose responses against the earliest envelope differed in magnitude and potency. Neutralization escape occurred in all participants, with later viruses showing decreased sensitivity to contemporaneous sera, although they retained sensitivity to new nAb responses. Early nAb responses were very restricted, occurring sequentially and targeting only two regions of the envelope. In V1V2, limited amino acid changes often involving indels or glycans, mediated partial or complete escape, with nAbs targeting the V1V2 region directly in 2 cases. The alpha-2 helix of C3 was also a nAb target, with neutralization escape associated with changes to positively charged residues. In one individual, relatively high titers of anti-C3 nAbs were required to drive genetic escape, taking up to 7 weeks for the resistant variant to predominate. Thereafter titers waned but were still measurable. Development of this single anti-C3 nAb specificity was associated with a 7-fold drop in HIV-1 viral load and a 4-fold rebound as the escape mutation emerged. Overall, our data suggest the development of a very limited number of neutralizing antibody specificities during the early stages of HIV-1 subtype C infection, with temporal fluctuations in specificities as escape occurs. While the mechanism of neutralization escape appears to vary between individuals, the involvement of limited regions suggests there might be common vulnerabilities in the HIV-1 subtype C transmitted envelope

    Genetic Signatures in the Envelope Glycoproteins of HIV-1 that Associate with Broadly Neutralizing Antibodies

    Get PDF
    A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1

    Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape

    Get PDF
    Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∢20 to 1∢50 (IC50) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1–V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one

    Protection in Macaques Immunized with HIV-1 Candidate Vaccines Can Be Predicted Using the Kinetics of Their Neutralizing Antibodies

    Get PDF
    A vaccine is needed to control the spread of human immunodeficiency virus type 1 (HIV-1). An in vitro assay that can predict the protection induced by a vaccine would facilitate the development of such a vaccine. A potential candidate would be an assay to quantify neutralization of HIV-1.We have used sera from rhesus macaques that have been immunized with HIV candidate vaccines and subsequently challenged with simian human immunodeficiency virus (SHIV). We compared neutralization assays with different formats. In experiments with the standardized and validated TZMbl assay, neutralizing antibody titers against homologous SHIV(SF162P4) pseudovirus gave a variable correlation with reductions in plasma viremia levels. The target cells used in the assays are not just passive indicators of virus infection but are actively involved in the neutralization process. When replicating virus was used with GHOST cell assays, events during the absorption phase, as well as the incubation phase, determine the level of neutralization. Sera that are associated with protection have properties that are closest to the traditional concept of neutralization: the concentration of antibody present during the absorption phase has no effect on the inactivation rate. In GHOST assays, events during the absorption phase may inactivate a fixed number, rather than a proportion, of virus so that while complete neutralization can be obtained, it can only be found at low doses particularly with isolates that are relatively resistant to neutralization.Two scenarios have the potential to predict protection by neutralizing antibodies at concentrations that can be induced by vaccination: antibodies that have properties close to the traditional concept of neutralization may protect against a range of challenge doses of neutralization sensitive HIV isolates; a window of opportunity also exists for protection against isolates that are more resistant to neutralization but only at low challenge doses

    HIV-1 Populations in Semen Arise through Multiple Mechanisms

    Get PDF
    HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus

    Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections

    Get PDF
    Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response

    Uterine Epithelial Cell Regulation of DC-SIGN Expression Inhibits Transmitted/Founder HIV-1 Trans Infection by Immature Dendritic Cells

    Get PDF
    Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1.Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-Ξ²) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- Ξ²1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-Ξ²1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection.Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1
    • …
    corecore