1,547 research outputs found

    Remarks on some vacuum solutions of scalar-tensor cosmological models

    Get PDF
    We present a class of exact vacuum solutions corresponding to de Sitter and warm inflation models in the framework of scalar-tensor cosmologies. We show that in both cases the field equations reduce to planar dynamical systems with constraints. Then, we carry out a qualitative analysis of the models by examining the phase diagrams of the solutions near the equilibrium points.Comment: 12 pages, 4 figures. To be published in the Brazilian Journal of Physic

    Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations

    Full text link
    We report constraints on the parameters of Yukawa-type corrections to Newtonian gravity from measurements of the gradient of the Casimir force in the configuration of an Au-coated sphere above a Si plate covered with corrugations of trapezoidal shape. For this purpose, the exact expression for the gradient of Yukawa force in the experimental configuration is derived and compared with that obtained using the proximity force approximation. The reported constraints are of almost the same strength as those found previously from several different experiments on the Casimir force and extend over a wide interaction range from 30 to 1260\,nm. It is discussed how to make them stronger by replacing the material of the plate.Comment: 14 pages, 2 figures, to appear in Phys. Rev.

    Nonrelativistic Quantum Analysis of the Charged Particle-Dyon System on a Conical Spacetime

    Full text link
    In this paper we develop the nonrelativistic quantum analysis of the charged particle-dyon system in the spacetime produced by an idealized cosmic string. In order to do that, we assume that the dyon is superposed to the cosmic string. Considering this peculiar configuration {\it conical} monopole harmonics are constructed, which are a generalizations of previous monopole harmonics obtained by Wu and Yang(1976 {\it Nucl. Phys. B} {\bf 107} 365) defined on a conical three-geometry. Bound and scattering wave functions are explicitly derived. As to bound states, we present the energy spectrum of the system, and analyze how the presence of the topological defect modifies obtained result. We also analyze this system admitting the presence of an extra isotropic harmonic potential acting on the particle. We show that the presence of this potential produces significant changes in the energy spectrum of the system.Comment: Paper accepted for publication in Classical and Quantum Gravit

    Self-similar magnetoresistance of Fibonacci ultrathin magnetic films

    Full text link
    We study numerically the magnetic properties (magnetization and magnetoresistance) of ultra-thin magnetic films (Fe/Cr) grown following the Fibonacci sequence. We use a phenomenological model which includes Zeeman, cubic anisotropy, bilinear and biquadratic exchange energies. Our physical parameters are based on experimental data recently reported, which contain biquadratic exchange coupling with magnitude comparable to the bilinear exchange coupling. When biquadratic exchange coupling is sufficiently large a striking self-similar pattern emerges.Comment: 5 pages, 5 EPS figures, REVTeX, accepted for publication in Phys. Rev.

    Present status of controversies regarding the thermal Casimir force

    Get PDF
    It is well known that, beginning in 2000, the behavior of the thermal correction to the Casimir force between real metals has been hotly debated. As was shown by several research groups, the Lifshitz theory, which provides the theoretical foundation for the calculation of both the van der Waals and Casimir forces, leads to different results depending on the model of metal conductivity used. To resolve these controversies, the theoretical considerations based on the principles of thermodynamics and new experimental tests were invoked. We analyze the present status of the problem (in particular, the advantages and disadvantages of the approaches based on the surface impedance and on the Drude model dielectric function) using rigorous analytical calculations of the entropy of a fluctuating field. We also discuss the results of a new precise experiment on the determination of the Casimir pressure between two parallel plates by means of a micromechanical torsional oscillator.Comment: 14 pages, 1 figure, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    Comment on "On the temperature dependence of the Casimir effect"

    Full text link
    Recently, Brevik et al. [Phys. Rev. E 71, 056101 (2005)] adduced arguments against the traditional approach to the thermal Casimir force between real metals and in favor of one of the alternative approaches. The latter assumes zero contribution from the transverse electric mode at zero frequency in qualitative disagreement with unity as given by the thermal quantum field theory for ideal metals. Those authors claim that their approach is consistent with experiments as well as with thermodynamics. We demonstrate that these conclusions are incorrect. We show specifically that their results are contradicted by four recent experiments and also violate the third law of thermodynamics (the Nernst heat theorem).Comment: 11 pages, 3 figures, changed in accordance with the final published versio

    Impact of surface imperfections on the Casimir force for lenses of centimeter-size curvature radii

    Full text link
    The impact of imperfections, which are always present on surfaces of lenses with centimeter-size curvature radii, on the Casimir force in the lens-plate geometry is investigated. It is shown that the commonly used formulation of the proximity force approximation is inapplicable for spherical lenses with surface imperfections, such as bubbles and pits. More general expressions for the Casimir force are derived that take surface imperfections into account. Using these expressions we show that surface imperfections can both increase and decrease the magnitude of the Casimir force up to a few tens of percent when compared with the case of a perfectly spherical lens. We demonstrate that the Casimir force between a perfectly spherical lens and a plate described by the Drude model can be made approximately equal to the force between a sphere with some surface imperfection and a plate described by the plasma model, and vice versa. In the case of a metallic sphere and semiconductor plate, approximately the same Casimir forces are obtained for four different descriptions of charge carriers in the semiconductor if appropriate surface imperfections on the lens surface are present. The conclusion is made that there is a fundamental problem in the interpretation of measurement data for the Casimir force, obtained by using spherical lenses of centimeter-size radii, and their comparison with theory.Comment: 28 pages, 7 figures, 1 table. To appear in Phys. Rev.

    New features of the thermal Casimir force at small separations

    Full text link
    The difference of the thermal Casimir forces at different temperatures between real metals is shown to increase with a decrease of the separation distance. This opens new opportunities for the demonstration of the thermal dependence of the Casimir force. Both configurations of two parallel plates and a sphere above a plate are considered. Different approaches to the theoretical description of the thermal Casimir force are shown to lead to different measurable predictions.Comment: 5 pages, 3 figures, to appear in Phys. Rev. Let

    Nonlocal impedances and the Casimir entropy at low temperatures

    Get PDF
    The problem with the temperature dependence of the Casimir force is investigated. Specifically, the entropy behavior in the low temperature limit, which caused debates in the literature, is analyzed. It is stressed that the behavior of the relaxation frequency in the T→0T\to0 limit does not play a physical role since the anomalous skin effect dominates in this range. In contrast with the previous works, where the approximate Leontovich impedance was used for analysis of nonlocal effects, we give description of the problem in terms of exact nonlocal impedances. It is found that the Casimir entropy is going to zero at T→0T\to0 only in the case when ss polarization does not contribute to the classical part of the Casimir force. However, the entropy approaching zero from the negative side that, in our opinion, cannot be considered as thermodynamically satisfactory. The resolution of the negative entropy problem proposed in the literature is analyzed and it is shown that it cannot be considered as complete. The crisis with the thermal Casimir effect is stressed.Comment: Accepted in Phys. Rev.
    • …
    corecore