10,402 research outputs found

    On the r-mode spectrum of relativistic stars

    Get PDF
    We present a mathematically rigorous proof that the r-mode spectrum of relativistic stars to the rotational lowest order has a continuous part. A rigorous definition of this spectrum is given in terms of the spectrum of a continuous linear operator. This study verifies earlier results by Kojima (1998) about the nature of the r-mode spectrum.Comment: 6 pages, no figure

    The JKind Model Checker

    Full text link
    JKind is an open-source industrial model checker developed by Rockwell Collins and the University of Minnesota. JKind uses multiple parallel engines to prove or falsify safety properties of infinite state models. It is portable, easy to install, performance competitive with other state-of-the-art model checkers, and has features designed to improve the results presented to users: inductive validity cores for proofs and counterexample smoothing for test-case generation. It serves as the back-end for various industrial applications.Comment: CAV 201

    Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals

    Get PDF
    The propagation of high-power femtosecond light pulses in lithium niobate crystals (LiNbO3) is investigated experimentally and theoretically in collinear pump-probe transmission experiments. It is found within a wide intensity range that a strong decrease of the pump transmission coefficient at wavelength 388 nm fully complies with the model of two-photon absorption; the corresponding nonlinear absorption coefficient is betap~=3.5 cm/GW. Furthermore, strong pump pulses induce a considerable absorption for the probe at 776 nm. The dependence of the probe transmission coefficient on the time delay Deltat between probe and pump pulses is characterized by a narrow dip (at Deltat~=0) and a long (on the picosecond time scale) lasting plateau. The dip is due to direct two-photon transitions involving pump and probe photons; the corresponding nonlinear absorption coefficient is betar~=0.9 cm/GW. The plateau absorption is caused by the presence of pump-excited charge carriers; the effective absorption cross section at 776 nm is sigmar~=8×10^–18 cm^2. The above nonlinear absorption parameters are not strongly polarization sensitive. No specific manifestations of the relaxation of hot carriers are found for a pulse duration of ~=0.24 ps

    Femtosecond time-resolved absorption processes in lithium niobate crystals

    Get PDF
    emtosecond pump pulses are strongly attenuated in lithium niobate owing to two-photon absorption; the relevant nonlinear coefficient beta_p ranges from ~3.5 cm/GW for lambda_p = 388 nm to ~0.1 cm/GW for 514 nm. In collinear pump-probe experiments the probe transmission at the double pump wavelength 2lambda_p=776 nm is controlled by two different processes: A direct absorption process involving pump and probe photons (beta_r ~ or = 0.9 cm/GW) leads to a pronounced short-duration transmission dip, whereas the probe absorption by pump-excited charge carriers results in a long-duration plateau. Coherent pump-probe interactions are of no importance. Hot-carrier relaxation occurs on the time scale of < or ~0.1 ps

    Galileo early cruise, including Venus, first Earth, and Gaspra encounters

    Get PDF
    This article documents Deep Space Network (DSN) support for the Galileo cruise to Jupiter. The unique trajectory affords multiple encounters during this cruise phase. Each encounter had or will have unique requirements for data acquisition and DSN support configurations. An overview of the cruise and encounters through the asteroid Gaspra encounter is provided

    Macroscopic coherence effects in a mesoscopic system: Weak localization of thin silver films in an undergraduate lab

    Get PDF
    We present an undergraduate lab that investigates weak localization in thin silver films. The films prepared in our lab have thickness, aa, between 60-200 \AA, a mesoscopic length scale. At low temperatures, the inelastic dephasing length for electrons, LϕL_{\phi}, exceeds the thickness of the film (Lϕ≫aL_{\phi} \gg a), and the films are then quasi-2D in nature. In this situation, theory predicts specific corrections to the Drude conductivity due to coherent interference between conducting electrons' wavefunctions, a macroscopically observable effect known as weak localization. This correction can be destroyed with the application of a magnetic field, and the resulting magnetoresistance curve provides information about electron transport in the film. This lab is suitable for Junior or Senior level students in an advanced undergraduate lab course.Comment: 16 pages, 9 figures. Replaces earlier version of paper rejected by Am. J. Phys. because of too much content on vacuum systems. New version deals with the undergraduate experiment on weak localization onl

    Investigations of solutions of Einstein's field equations close to lambda-Taub-NUT

    Full text link
    We present investigations of a class of solutions of Einstein's field equations close to the family of lambda-Taub-NUT spacetimes. The studies are done using a numerical code introduced by the author elsewhere. One of the main technical complication is due to the S3-topology of the Cauchy surfaces. Complementing these numerical results with heuristic arguments, we are able to yield some first insights into the strong cosmic censorship issue and the conjectures by Belinskii, Khalatnikov, and Lifschitz in this class of spacetimes. In particular, the current investigations suggest that strong cosmic censorship holds in this class. We further identify open issues in our current approach and point to future research projects.Comment: 24 pages, 12 figures, uses psfrag and hyperref; replaced with published version, only minor corrections of typos and reference

    Identification of Set1 Target Genes

    Get PDF
    The Set1 complex, a histone methyltransferase complex found in S. cerevisiae (budding yeast), is the only histone methyltransferase responsible for catalyzing methylation of histone H3 at Lysine 4. It possesses homologues in other species, humans included. While yeast only have the Set1 complex, the human homologues of the yeast Set1 complex include mixed-lineage leukemia family (MLL1-4), Set1 A, Set1 B, among others. MLL1-4 has been shown to play a role in transcription, cell type specification, and the development of leukemia. One application of characterizing the role of a protein is that the information gained can provide insight into the function of its homologues; possibly leading to treatments for mutations in those homologues. This ongoing discovery-based project aims to characterize the role of Set1 in Saccharomyces cerevisiae, a model organism frequently used in genetics research commonly known as budding yeast. By utilizing a high-copy plasmid suppression screen, we aim to identify specific genes that are regulated by Set1. Set1’s methylation (and activation of certain genes) has been shown by other studies to be necessary for cell wall integrity, and therefore colony growth, at high temperatures. This sensitivity was the basis of selection for this experiment. Plasmids from a library were transformed into the SET1 deletes to observe which, if any, rescued the cells. Plasmids from the library were extracted from E. coli using a standard miniprep protocol. Yeast was transformed using a long transformation protocol. The transformed cells were incubated for four to five days at 39.5oC
    • …
    corecore