241 research outputs found

    The complexity of dominating set reconfiguration

    Full text link
    Suppose that we are given two dominating sets DsD_s and DtD_t of a graph GG whose cardinalities are at most a given threshold kk. Then, we are asked whether there exists a sequence of dominating sets of GG between DsD_s and DtD_t such that each dominating set in the sequence is of cardinality at most kk and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, trees, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence such that the number of additions and deletions is bounded by O(n)O(n), where nn is the number of vertices in the input graph

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33

    Is post orthognathic maxillary sinusitis related to sino-nasal anatomical alterations?

    Get PDF
    Le Fort I osteotomies have been used for more than five decades, but their impact on nasal and paranasal cavities physiology, has not been studied deeply. In this paper we want to analyse the possible correlation between post-orthognathic findings and prevalence of sinusitis which require surgical treatment. A retrospective cohort study was designed in 2017; the study was designed and carried out in the Verona University maxillo-facial department, a referral centre for orthognathic surgery. The study population is made of 64 patients that underwent orthognathic surgery (To treat class II or III malocclusion) between 2010 and 2015. Inclusion criteria were the availability of a Cone Beam Computed Tomography (CBCT) before surgery and one between 12 and 24 months after orthognathic surgery. Exclusion criteria were smoking habit and previous orthognathic procedures. During follow-up time prevalence of sinusitis was 18.5% and some patients required a secondary surgery to treat sinusitis. Surgery induced anatomic alterations were frequent in patients with sinusitis, sings and symptoms of sinusitis show positive correlation with anatomic alterations

    A SAT-based System for Consistent Query Answering

    Full text link
    An inconsistent database is a database that violates one or more integrity constraints, such as functional dependencies. Consistent Query Answering is a rigorous and principled approach to the semantics of queries posed against inconsistent databases. The consistent answers to a query on an inconsistent database is the intersection of the answers to the query on every repair, i.e., on every consistent database that differs from the given inconsistent one in a minimal way. Computing the consistent answers of a fixed conjunctive query on a given inconsistent database can be a coNP-hard problem, even though every fixed conjunctive query is efficiently computable on a given consistent database. We designed, implemented, and evaluated CAvSAT, a SAT-based system for consistent query answering. CAvSAT leverages a set of natural reductions from the complement of consistent query answering to SAT and to Weighted MaxSAT. The system is capable of handling unions of conjunctive queries and arbitrary denial constraints, which include functional dependencies as a special case. We report results from experiments evaluating CAvSAT on both synthetic and real-world databases. These results provide evidence that a SAT-based approach can give rise to a comprehensive and scalable system for consistent query answering.Comment: 25 pages including appendix, to appear in the 22nd International Conference on Theory and Applications of Satisfiability Testin

    ERBlox: Combining Matching Dependencies with Machine Learning for Entity Resolution

    Full text link
    Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called matching dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating three components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built using machine learning (ML) techniques, (b) MDs for supporting both the blocking phase of ML and the merge itself; and (c) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for data processing, and the specification and enforcement of MDs.Comment: To appear in Proc. SUM, 201

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let kNk \in \mathbb{N} and let GG be a graph. A function f:V(G)2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of xV(G)f(x)\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Answers that Have Integrity

    Full text link
    [EN] Answers to queries in possibly inconsistent databases may not have integrity. We formalize ‘has integrity’ on the basis of a definition of ‘causes’. A cause of an answer is a minimal excerpt of the database that explains why the answer has been given. An answer has integrity if one of its causes does not overlap with any cause of integrity violation.Supported by FEDER and the Spanish grants TIN2009-14460-C03, TIN2010-17139.Decker, H. (2011). Answers that Have Integrity. Lecture Notes in Computer Science. 6834:54-72. https://doi.org/10.1007/978-3-642-23441-5S5472683
    corecore