524 research outputs found

    The 18F(p,a)15O reaction rate for application to nova gamma-ray emission

    Full text link
    The 18F(p,a)15O reaction is recognized as one of the most important reaction for nova gamma-ray astronomy as it governs the early <= 511 keV emission. However, its rate remains largely uncertain at nova temperatures due to unknown low-energy resonance strengths. We report here on our last results concerning the study of the D(18F,pa)15N reaction, as well as on the determination of the 18F(p,a)15O reaction rate using the R-matrix theory. Remaining uncertainties are discussed.Comment: Contribution to the Eighth International Symposium on Nuclei in the Cosmos, Vancouver july 19-23. 4 pages and 2 figure

    A CVD diamond detector for (n,alpha) cross section measurements

    Get PDF
    Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceIn astrophysics, the determination of the optical alpha-nucleus potential for low alpha-particle energies, crucial in understanding the origin of the stable isotopes, has turned out to be a challenge. Theory still cannot predict the optical potentials required for the calculation of the astrophysical reaction rates in the Hauser-Feshbach statistical model and there is scant experimental information on reactions with alpha particles at the relevant astrophysical energies. Measurements of (n,alpha) cross-sections offer a good opportunity to study the alpha channel. At the n_TOF experiment at CERN, a prototype detector, based on the chemical vapor deposition (CVD) diamond technology, has been recently developed for (n,alpha) measurements. A reference measurement of the 10B(n,alpha)7Li reaction was performed in 2011 at n_TOF as a feasibility study for this detector type. The results of this measurement and an outline for future experiments are presented here

    Study of the Fusion-Fission Process in the 35Cl+24Mg^{35}Cl+^{24}Mg Reaction

    Get PDF
    Fusion-fission and fully energy-damped binary processes of the 35^{35}Cl+24^{24}Mg reaction were investigated using particle-particle coincidence techniques at a 35^{35}Cl bombarding energy of Elab_{lab} \approx 8 MeV/nucleon. Inclusive data were also taken in order to determine the partial wave distribution of the fusion process. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with a relatively large multiplicity of secondary light-charged particles emitted by the two primary excited fragments in the exit channel. No evidence is observed for ternary-breakup processes, as expected from the systematics recently established for incident energies below 15 MeV/nucleon and for a large number of reactions. The binary-process results are compared with predictions of statistical-model calculations. The calculations were performed using the Extended Hauser-Feshbach method, based on the available phase space at the scission point of the compound nucleus. This new method uses temperature-dependent level densities and its predictions are in good agreement with the presented experimental data, thus consistent with the fusion-fission origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the European Physical Journal A - Hadrons and Nucle

    Design study for a new spallation target of the n_TOF facility at CERN

    Full text link
    The n_TOF facility is a time of flight spectrometer dedicated to measuring neutron capture and fission cross sections. The neutron source consists on a lead target bombarded by a high energetic proton beam. After finishing a successful period of data taking by the end of 2004, it has been decided to upgrade the neutron spallation source with a cladded target. In this study, Monte Carlo simulations are reported for the assessment and comparison of the neutron and gamma fluxes from different target configurations. In addition, the plans for a second vertical measuring station with a flight path of 20 m above the spallation target have been considered in the simulations as well. Results for the energy deposition and the target heating are also presented

    Recent results in nuclear astrophysics at the n_TOF facility at CERN

    Get PDF
    The neutron time of flight (n_TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n_TOF facility are presented

    A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes

    Get PDF
    In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the 233U(n, ) cross-section at the n_TOF facility at CERN, where it was coupled to the n_TOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.French NEEDS/NACRE ProjectEuropean Commission within HORIZON2020 via the EURATOM Project EUFRA

    Measurement of the 242Pu(n,f) cross section at n_TOF

    Get PDF
    Knowledge of neutron cross sections of various plutonium isotopes and other minor actinides is crucial for the design of advanced nuclear systems. The 242Pu(n,f) cross sections were measured at the CERN n-TOF facility, taking advantage of the wide energy range (from thermal to GeV) and the high instantaneous flux of the neutron beam. In this work, preliminary results are presented along with a theoretical cross section calculation performed with the EMPIRE code. © Owned by the authors, published by EDP Sciences, 2014

    High precision measurement of the radiative capture cross section of 238U at the n-TOF CERN facility

    Get PDF
    The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented

    Measurement of the radiative capture cross section of the s-process branching points 204Tl and 171Tm at the n-TOF facility (CERN)

    Get PDF
    The neutron capture cross section of some unstable nuclei is especially relevant for s-process nucleosynthesis studies. This magnitude is crucial to determine the local abundance pattern, which can yield valuable information of the s-process stellar environment. In this work we describe the neutron capture (n,γ) measurement on two of these nuclei of interest, 204Tl and 171Tm, from target production to the final measurement, performed successfully at the n_TOF facility at CERN in 2014 and 2015. Preliminary results on the ongoing experimental data analysis will also be shown. These results include the first ever experimental observation of capture resonances for these two nuclei.The authors acknowledge financial support by the Spanish FPA2014-52823-C2-2-P project, by the EC Marie Curie Action “NeutAndalus” (FP7-PEOPLE-2012-CIG- 334315), by the ARGOS scholarship of the Spanish Nuclear Safety Council (CSN) and the Universitat Politècnica de Catalunya, and by the University of Sevilla via the VI PPIT-US program
    corecore