434 research outputs found

    Spectral weight function for the half-filled Hubbard model: a singular value decomposition approach

    Get PDF
    The singular value decomposition technique is used to reconstruct the electronic spectral weight function for a half-filled Hubbard model with on-site repulsion U=4tU=4t from Quantum Monte Carlo data. A two-band structure for the single-particle excitation spectrum is found to persist as the lattice size exceeds the spin-spin correlation length. The observed bands are flat in the vicinity of the (0,π),(π,0)(0,\pi),(\pi,0) points in the Brillouin zone, in accordance with experimental data for high-temperature superconducting compounds.Comment: 4 pages, Revtex

    Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina

    Get PDF
    1027-1038Quinoa (Chenopodium quinoa Willd.), one of the main crops domesticated in the Andean highlands 1,000 of years ago, played an important role as a protein source. 35 germplasm accessions collected along the Northwest Argentina (NWA) region were studied using 22 microsatellite (SSR) markers. Results showed a great level of genetic diversity, differing from previous reports about the geographical distribution of quinoa variability. All SSR loci analysed were highly polymorphic detecting a total of 354 alleles among all populations, with an average of 16 alleles per locus. Cluster analyses grouped the accessions into four main clusters at the average genetic distance level (0.80), each of which represented a different environment of the NWA region: Puna (UHe = 0.42, ±0.07 SE), Dry Valleys (UHe = 0.27, ±0.05 SE), Eastern Humid Valleys (UHe = 0.16, ±0.04 SE) and a transition area with high altitudes between the last two environments (UHe = 0.25, ±0.03 SE). An eastward decreasing genetic diversity gradient was found. AMOVA analyses showed a strong genetic structure: a high population subdivision relative to the grouping by region (Fsr = 0.47) together with a high genetic differentiation among populations (Fst = 0.58) and a heterozygous defect (Fis = 0.63) in each of them. The variability structure, a reflection of the structure of the NWA landscapes, is discussed in connection with environmental variables

    Conductance of the single-electron transistor: A comparison of experimental data with Monte Carlo calculations

    Full text link
    We report on experimental results for the conductance of metallic single-electron transistors as a function of temperature, gate voltage and dimensionless conductance. In contrast to previous experiments our transistor layout allows for a direct measurement of the parallel conductance and no ad hoc assumptions on the symmetry of the transistors are necessary. Thus we can make a comparison between our data and theoretical predictions without any adjustable parameter. Even for rather weakly conducting transistors significant deviations from the perturbative results are noted. On the other hand, path integral Monte Carlo calculations show remarkable agreement with experiments for the whole range of temperatures and conductances.Comment: 8 pages, 7 figures, revtex4, corrected typos, submitted to PR

    Image labeling and grouping by minimizing linear functionals over cones

    Full text link
    We consider energy minimization problems related to image labeling, partitioning, and grouping, which typically show up at mid-level stages of computer vision systems. A common feature of these problems is their intrinsic combinatorial complexity from an optimization pointof-view. Rather than trying to compute the global minimum - a goal we consider as elusive in these cases - we wish to design optimization approaches which exhibit two relevant properties: First, in each application a solution with guaranteed degree of suboptimality can be computed. Secondly, the computations are based on clearly defined algorithms which do not comprise any (hidden) tuning parameters. In this paper, we focus on the second property and introduce a novel and general optimization technique to the field of computer vision which amounts to compute a sub optimal solution by just solving a convex optimization problem. As representative examples, we consider two binary quadratic energy functionals related to image labeling and perceptual grouping. Both problems can be considered as instances of a general quadratic functional in binary variables, which is embedded into a higher-dimensional space such that sub optimal solutions can be computed as minima of linear functionals over cones in that space (semidefinite programs). Extensive numerical results reveal that, on the average, sub optimal solutions can be computed which yield a gap below 5% with respect to the global optimum in case where this is known

    Unfolding of differential energy spectra in the MAGIC experiment

    Get PDF
    The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.Comment: Submitted to NIM

    Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9.

    Get PDF
    The advent of the easily programmable and efficient CRISPR/Cas9 nuclease system has revolutionized genetic engineering. While conventional gene knockout experiments using CRISPR/Cas9 are very valuable, these are not well suited to study stage-specific gene function in dynamic situations such as development or disease. Here we describe a CRISPR/Cas9-based OPTimized inducible gene KnockOut method (OPTiKO) for conditional loss-of-function studies in human cells. This approach relies on an improved tetracycline-inducible system for conditional expression of single guide RNAs (sgRNAs) that drive Cas9 activity. In order to ensure homogeneous and stable expression, the necessary transgenes are expressed following rapid and efficient single-step genetic engineering of the AAVS1 genomic safe harbor. When implemented in human pluripotent stem cells (hPSCs), the approach can be then efficiently applied to virtually any hPSC-derived human cell type at various stages of development or disease

    Genome editing reveals a role for OCT4 in human embryogenesis.

    Get PDF
    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.DW was supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme. NK was supported by the University of Oxford Clarendon Fund. AB was supported by a British Heart Foundation PhD Studentship (FS/11/77/39327). LV was supported by core grant funding from the Wellcome Trust and Medical Research Council (PSAG028). J-SK was supported by the Institute for Basic Science (IBS-R021-D1). Work in the KKN and JMAT labs was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust (FC001120 and FC001193)

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change
    • 

    corecore