4 research outputs found

    BMC Cancer

    Get PDF
    BACKGROUND: Although some countries have observed a stabilization in the incidence of CNS, an increasing incidence has been reported from multiple studies. Recent observations point out to the heterogeneity of incidence trends according to histological subtypes, gender and age-groups. Using a high-quality regional CNS tumor registry, this article describes the trends of CNS tumor incidence for main histological subtypes, including benign and malignant tumors, in the French department of Gironde from 2000 to 2012. METHODS: Crude and age-standardized incidence rates were calculated globally, by histological subtypes, malignant status, gender and age groups. For trends, annual percent changes (APC) were obtained from a piecewise log-linear model. RESULTS: A total of 3515 CNS tumors was registered during the period. The incidence of overall CNS tumors was 19/100000 person-years (8.3/100000 for neuroepithelial tumors and 7.3/100000 for meningeal tumors). An increased incidence of overall CNS tumors was observed from 2000 to 2012 (APC = + 2.7%; 95%-confidence interval (CI): 1.8-3.7). This trend was mainly explained by an increase in the incidence of meningiomas over the period (APC = + 5.4%, 95%-CI: 3.8-7.0). The increased incidence rate of CNS tumors was more pronounced in female and in older patients even though the incidence rate increased in all age groups. CONCLUSIONS: Part of the temporal variation may be attributed to improvement in registration, diagnosis and clinical practices but also to changes in potential risk factors. Thus, etiological studies on CNS tumors are needed to clarify this rising trend

    Neurochirurgie

    No full text
    Although they represent about a third of all the tumors of the central nervous system, knowledge concerning meningioma epidemiology (including incidence data and exploration of the risk factors) remains scarce compared to that of gliomas. A limited number of cancer registries worldwide only record malignant brain tumors, however their completeness and accuracy have been questioned. Even if comparisons are made difficult due to differences in methodologies, available annual incidence rates (sex- and age-standardized, generally on US or World standard population), provided by population-based registries range from 1.3/100,000 to 7.8/100,000 for cerebral meningiomas. An increase in the incidence of primary brain tumors in general and of meningiomas in particular has been observed during the past decades in several countries. It has been suggested that this trend could be artefactual and could be the resultant of an ageing population, improvement in health access and in diagnostic procedures, changes in coding classification for tumors recorded in registries, and/or an increase in the rate of histological confirmation, even in the elderly. All these factors are likely to play a role but they might not fully explain the increase in incidence, observed in most age groups. In addition to intrinsic risk factors (gender, ethnic groups, allergic conditions, familial and personal history, genetic polymorphisms), some exogenous risk factors have been suspected to play a role in the etiology of meningiomas and their changes with time is likely to impact incidence trends. A causal link has been established only for ionising radiation but the role of many other factors have been hypothesised: electromagnetic fields, nutrition, pesticides, hormonal as well as reproductive factors. Considering the serious or even lethal potentiality of some meningiomas and the apparent rise in their incidence, all practitioners involved in neuro-oncology should feel concerned today of the necessity to better assess their public health burden and to study their epidemiological features
    corecore