66 research outputs found

    Retinoids in Mammals: A Crystallographic Perspective

    Get PDF
    Retinoids are involved in several essential processes in mammals, including vision, morphogenesis, spermatogenesis and maintenance of epithelial tissue. Since they are labile compounds, nearly insoluble in water, they are present in body fluids and within the cell bound to specific retinoid-binding proteins. In plasma, a single protein, called retinol-binding protein, delivers the alcoholic form of vitamin A from its store sites to target cells. In the cytoplasm, four different cellular retinol-binding proteins and two retinoic acid-binding proteins have been discovered and structurally characterized to date. Finally, two classes of nuclear receptors for retinoic acid isomers have been characterized. The structure/function relationship for several retinoid-binding proteins is discussed here

    The Structure of 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase Provides Insights into the Mechanism of Uric Acid Degradation

    Get PDF
    The complete degradation of uric acid to (S)-allantoin, as recently elucidated, involves three enzymatic reactions. Inactivation by pseudogenization of the genes of the pathway occurred during hominoid evolution, resulting in a high concentration of urate in the blood and susceptibility to gout. Here, we describe the 1.8A resolution crystal structure of the homodimeric 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase, which catalyzes the last step in the urate degradation pathway, for both ligand-free enzyme and enzyme in complex with the substrate analogs (R)-allantoin and guanine. Each monomer comprises ten alpha-helices, grouped into two domains and assembled in a novel fold. The structure and the mutational analysis of the active site have allowed us to identify some residues that are essential for catalysis, among which His-67 and Glu-87 appear to play a particularly significant role. Glu-87 may facilitate the exit of the carboxylate group because of electrostatic repulsion that destabilizes the ground state of the substrate, whereas His-67 is likely to be involved in a protonation step leading to the stereoselective formation of the (S)-allantoin enantiomer as reaction product. The structural and functional characterization of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase can provide useful information in view of the potential use of this enzyme in the enzymatic therapy of gout

    Transthyretin binding heterogeneity and antiamyloidogenic activity of natural polyphenols and their metabolites

    Get PDF
    Transthyretin (TTR) is an amyloidogenic protein, the amyloidogenic potential of which is enhanced by a number of specific point mutations. The ability to inhibit TTR fibrillogenesis is known for several classes of compounds, including natural polyphenols, which protect the native state of TTR by specifically interacting with its thyroxine binding sites. Comparative analyses of the interaction and of the ability to protect the TTR native state for polyphenols, both stilbenoids and flavonoids, and some of their main metabolites have been carried out. A main finding of this investigation was the highly preferential binding of resveratrol and thyroxine, both characterized by negative binding cooperativity, to distinct sites in TTR, consistent with the data of x-ray analysis of TTR in complex with both ligands. Although revealing the ability of the two thyroxine binding sites of TTR to discriminate between different ligands, this feature has allowed us to evaluate the interactions of polyphenols with both resveratrol and thyroxine preferential binding sites, by using resveratrol and radiolabeled T4 as probes. Among flavonoids, genistein and apigenin were able to effectively displace resveratrol from its preferential binding site, whereas genistein also showed the ability to interact, albeit weakly, with the preferential thyroxine binding site. Several glucuronidated polyphenol metabolites did not exhibit significant competition for resveratrol and thyroxine preferential binding sites and lacked the ability to stabilize TTR. However, resveratrol-3-O-sulfate was able to significantly protect the protein native state. A rationale for the in vitro properties found for polyphenol metabolites was provided by x-ray analysis of their complexes with TTR

    Distinctive binding and structural properties of piscine transthyretin

    Get PDF
    AbstractThe thyroid hormone binding protein transthyretin (TTR) forms a macromolecular complex with the retinol-specific carrier retinol binding protein (RBP) in the blood of higher vertebrates. Piscine TTR is shown here to exhibit high binding affinity for L-thyroxine and negligible affinity for RBP. The 1.56 Å resolution X-ray structure of sea bream TTR, compared with that of human TTR, reveals a high degree of conservation of the thyroid hormone binding sites. In contrast, some amino acid differences in discrete regions of sea bream TTR appear to be responsible for the lack of protein–protein recognition, providing evidence for the crucial role played by a limited number of residues in the interaction between RBP and TTR. Overall, this study makes it possible to draw conclusions on evolutionary relationships for RBPs and TTRs of phylogenetically distant vertebrates

    Ligand binding and structural analysis of a human putative cellular retinol-binding protein.

    Get PDF
    Three cellular retinol-binding protein (CRBP) types (CRBP I, II, and III) with distinct tissue distributions and retinoid binding properties have been structurally characterized thus far. A human binding protein, whose mRNA is expressed primarily in kidney, heart, and transverse colon, is shown here to be a CRBP family member (human CRBP IV), according to amino acid sequence, phylogenetic analysis, gene structure organization, and x-ray structural analysis. Retinol binding to CRBP IV leads to an absorption spectrum distinct from a typical holo-CRBP spectrum and is characterized by an affinity (K(d) = approximately 200 nm) lower than those for CRBP I, II, and III, as established in direct and competitive binding assays. As revealed by mutagenic analysis, the presence in CRBP IV of His(108) in place of Gln(108) is not responsible for the unusual holo-CRBP IV spectrum. The 2-A resolution crystal structure of human apo-CRBP IV is very similar to those of other structurally characterized CRBPs. The side chain of Tyr(60) is present within the binding cavity of the apoprotein and might affect the interaction with the retinol molecule. These results indicate that human CRBP IV belongs to a clearly distinct CRBP subfamily and suggest a relatively different mode of retinol binding for this binding protein

    Logical Identification of an Allantoinase Analog (puuE) Recruited from Polysaccharide Deacetylases

    Get PDF
    The hydrolytic cleavage of the hydantoin ring of allantoin, catalyzed by allantoinase, is required for the utilization of the nitrogen present in purine-derived compounds. The allantoinase gene (DAL1), however, is missing in many completely sequenced organisms able to use allantoin as a nitrogen source. Here we show that an alternative allantoinase gene (puuE) can be precisely identified by analyzing its logic relationship with three other genes of the pathway. The novel allantoinase is annotated in structure and sequence data bases as polysaccharide deacetylase for its homology with enzymes that catalyze hydrolytic reactions on chitin or peptidoglycan substrates. The recombinant PuuE protein from Pseudomonas fluorescens exhibits metal-independent allantoinase activity and stereospecificity for the S enantiomer of allantoin. The crystal structures of the protein and of protein-inhibitor complexes reveal an overall similarity with the polysaccharide deacetylase beta/alpha barrel and remarkable differences in oligomeric assembly and active site geometry. The conserved Asp-His-His metal-binding triad is replaced by Glu-His-Trp, a configuration that is distinctive of PuuE proteins within the protein family. An extra domain at the top of the barrel offers a scaffold for protein tetramerization and forms a small substrate-binding cleft by hiding the large binding groove of polysaccharide deacetylases. Substrate positioning at the active site suggests an acid/base mechanism of catalysis in which only one member of the catalytic pair of polysaccharide deacetylases has been conserved. These data provide a structural rationale for the shifting of substrate specificity that occurred during evolution

    The Ile-84-->Ser amino acid substitution in transthyretin interferes with the interaction with plasma retinol-binding protein.

    Get PDF
    In plasma the thyroid hormone-binding protein transthyretin (TTR) forms a tight complex with the specific retinol carrier retinol-binding protein (RBP). The Ile-84–>Ser mutation and several other point mutations in TTR are associated with familial amyloidotic polyneuropathy, which is characterized by extracellular depositions of amyloid fibrils mainly consisting of mutated TTRs. The interactions with human RBP of recombinant human normal and Ser-84 TTRs were investigated by monitoring the fluorescence anisotropy of RBP-bound retinol. A nearly negligible affinity of the recombinant Ser-84 TTR for RBP was found. This result indicates the participation of a region on the outer surface of TTR that comprises Ile-84 in the recognition of RBP. In preliminary studies the Ser-84 TTR was the only one among several amyloidogenic variant TTRs to display negligible interaction with RBP. Therefore, in general a substantially altered binding of TTR to RBP is not associated with familial amyloidotic polyneuropathy. Instead, the altered binding of Ser-84 TTR to RBP appears to be responsible for an abnormal plasma transport of RBP. The recombinant normal TTR exhibits binding properties, in its interaction with human RBP, approximately similar to those of TTR purified from human plasma. Two independent and equivalent RBP binding sites on recombinant normal TTR are characterized by a dissociation constant of about 0.4 microM

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Plasma retinol-binding protein: structure and interactions with retinol, retinoids and transthyretin

    No full text
    Retinol-binding protein (RBP) is the retinol-specific transport protein present in plasma. The available crystal structures of different forms of RBP have provided details of the interactions of this binding protein with retinol, retinoids, and transthyretin (TTR, one of the plasma carriers of thyroid hormones). The core of RBP is a beta-barrel, the cavity of which accommodates retinol, establishing with its buried portions apolar contacts. Instead, the retinol hydroxyl is near the protein surface, in the region of the entrance loops surrounding the opening of the binding cavity, and participates in polar interactions. The stability of the retinol-RBP complex appears to be further enhanced when holo-RBP is bound to TTR. Accordingly, the region of the entrance loops represents the contact area of RBP interacting with the TTR counterpart, such that the hydroxyl of the RBP-bound vitamin becomes fully buried in the holo-RBP-TTR complex. Limited protein conformational changes affecting the entrance loops, which lead to a decrease or loss of the binding affinity of RBP for TTR, have been demonstrated for apo-RBP and RBP in complex with retinoids modified in the area of the retinol hydroxyl. A relatively small number of amino acid residues of RBP, essentially confined to the region of the entrance loops, and of TTR appear to play a critical role in the formation of the RBP-TTR complex, as established by crystallographic studies, mutational analysis, and amino acid sequence analysis of phylogenetically distant RBPs and TTRs. Overall, the available evidence indicates the existence of a high degree of complementarity between RBP and TTR, the contact areas of which are highly sensitive to conformational changes and amino acid replacements
    corecore