89 research outputs found

    Cyanobacterial mats: Microanalysis of community metabolism

    Get PDF
    The microbial communities in two sites were studied using several approaches: (1) light microscopy; (2) the measurement of microprofiles of oxygen and sulfide at the surface of the microbial mat; (3) the study of diurnal variation of oxygen and sulfides; (4) in situ measurement of photosynthesis and sulfate reduction and study of the coupling of these two processes; (5) measurement of glutathione in the upper layers of the microbial mat as a possible oxygen quencher; (6) measurement of reduced iron as a possible intermediate electron donor along the established redoxcline in the mats; (7) measurement of dissolved phosphate as an indicator of processes of break down of organic matter in these systems; and (8) measurement of carbon dioxide in the interstitial water and its delta C-13 in an attempt to understand the flow of CO2 through the systems. Microbial processes of primary production and initial degradation at the most active zone of the microbial mat were analyzed

    Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton

    Get PDF
    Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as “bacterial microtubules” (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening

    CD39, NTPDase 1, is attached to the plasma membrane by two transmembrane domains. Why?

    Get PDF
    Since the identification of CD39 and other members of the e-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) family as the primary enzymes responsible for cell surface nucleotide hydrolysis, one of their most intriguing features has been their unusual topology. The active site lies in the large extracellular region, but instead of being anchored in the membrane by a single transmembrane domain or lipid link like other ectoenzymes, CD39 has two transmembrane domains, one at each end. In this review we discuss evidence that the structure and dynamics of the transmembrane helices are intricately connected to enzymatic function. Removal of either or both transmembrane domains or disruption of their native state by detergent solubilization reduces activity by 90%, indicating that native function requires both transmembrane domains to be present and in the membrane. Enzymatic and mutational analysis of the native and truncated forms has shown that the active site can exist in distinct functional states characterized by different total activities, substrate specificities, hydrolysis mechanisms, and intermediate ADP release during ATP hydrolysis, depending on the state of the transmembrane domains. Disulfide crosslinking of cysteines introduced within the transmembrane helices revealed that they interact within and between molecules, in particular near the extracellular domain, and that activity depends on their organization. Both helices exhibit a high degree of rotational mobility, and the ability to undergo dynamic motions is required for activity and regulated by substrate binding. Recent reports suggest that membrane composition can regulate NTPDase activity. We propose that mechanical bilayer properties, potentially elasticity, might regulate CD39 by altering the balance between stability and mobility of its transmembrane domains

    Towards a Synthetic Chloroplast

    Get PDF
    The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices

    Fussy Feeders: Phyllosoma Larvae of the Western Rocklobster (Panulirus cygnus) Demonstrate Prey Preference

    Get PDF
    The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of the planktotrophic larval stage (phyllosoma) of P. cygnus were previously unknown, hampering both management and aquaculture efforts for this species. Ship-board feeding trials of wild-caught mid-late stage P. cygnus phyllosoma in the eastern Indian Ocean, off the coast of Western Australia, were conducted in July 2010 and August-September 2011. In a series of experiments, phyllosoma were fed single and mixed species diets of relatively abundant potential prey items (chaetognaths, salps, and krill). Chaetognaths were consumed in 2–8 times higher numbers than the other prey, and the rate of consumption of chaetognaths increased with increasing concentration of prey. The highly variable lipid content of the phyllosoma, and the fatty acid profiles of the phyllosoma and chaetognaths, indicated they were from an oligotrophic oceanic food chain where food resources for macrozooplankton were likely to be constrained. Phyllosoma fed chaetognaths over 6 days showed significant changes in some fatty acids and tended to accumulate lipid, indicating an improvement in overall nutritional condition. The discovery of a preferred prey for P. cygnus will provide a basis for future oceanographic, management and aquaculture research for this economically and ecologically valuable species
    corecore