5,206 research outputs found

    The 1/D Expansion for Classical Magnets: Low-Dimensional Models with Magnetic Field

    Full text link
    The field-dependent magnetization m(H,T) of 1- and 2-dimensional classical magnets described by the DD-component vector model is calculated analytically in the whole range of temperature and magnetic fields with the help of the 1/D expansion. In the 1-st order in 1/D the theory reproduces with a good accuracy the temperature dependence of the zero-field susceptibility of antiferromagnets \chi with the maximum at T \lsim |J_0|/D (J_0 is the Fourier component of the exchange interaction) and describes for the first time the singular behavior of \chi(H,T) at small temperatures and magnetic fields: \lim_{T\to 0}\lim_{H\to 0} \chi(H,T)=1/(2|J_0|)(1-1/D) and \lim_{H\to 0}\lim_{T\to 0} \chi(H,T)=1/(2|J_0|)

    SO(5) superconductor in a Zeeman magnetic field: Phase diagram and thermodynamic properties

    Full text link
    In this paper we present calculations of the SO(5) quantum rotor theory of high-Tc_{c} superconductivity in Zeeman magnetic field. We use the spherical approach for five-component quantum rotors in three-dimensional lattice to obtain formulas for critical lines, free energy, entropy and specific heat and present temperature dependences of these quantities for different values of magnetic field. Our results are in qualitative agreement with relevant experiments on high-Tc_{c} cuprates.Comment: 4 pages, 2 figures, to appear in Phys. Rev. B, see http://prb.aps.or

    Dimensional Crossover in the Large N Limit

    Full text link
    We consider dimensional crossover for an O(N)O(N) Landau-Ginzburg-Wilson model on a dd-dimensional film geometry of thickness LL in the large NN-limit. We calculate the full universal crossover scaling forms for the free energy and the equation of state. We compare the results obtained using ``environmentally friendly'' renormalization with those found using a direct, non-renormalization group approach. A set of effective critical exponents are calculated and scaling laws for these exponents are shown to hold exactly, thereby yielding non-trivial relations between the various thermodynamic scaling functions.Comment: 25 pages of PlainTe

    Spherical Model in a Random Field

    Full text link
    We investigate the properties of the Gibbs states and thermodynamic observables of the spherical model in a random field. We show that on the low-temperature critical line the magnetization of the model is not a self-averaging observable, but it self-averages conditionally. We also show that an arbitrarily weak homogeneous boundary field dominates over fluctuations of the random field once the model transits into a ferromagnetic phase. As a result, a homogeneous boundary field restores the conventional self-averaging of thermodynamic observables, like the magnetization and the susceptibility. We also investigate the effective field created at the sites of the lattice by the random field, and show that at the critical temperature of the spherical model the effective field undergoes a transition into a phase with long-range correlations r4d\sim r^{4-d}.Comment: 29 page

    Distributed Intelligent MEMS: Progresses and Perspectives

    No full text
    International audienceMEMS research has until recently focused mainly on the engineering process, resulting in interesting products and a growing market. To fully realize the promise of MEMS, the next step is to add embedded intelligence. With embedded intelligence, the scalability of manufacturing will enable distributed MEMS systems consisting of thousands or millions of units which can work together to achieve a common goal. However, before such systems can become a reallity, we must come to grips with the challenge of scalability which will require paradigm-shifts both in hardware and software. Furthermore, the need for coordinated actuation, programming, communication and mobility management raises new challenges in both control and programming. The objective of this article is to report the progresses made by taking the example of two research projects and by giving the remaining challenges and the perspectives of distributed intelligent MEMS

    Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed

    Get PDF
    BACKGROUND: Decreased gait speed and increased stride time, stride length, double support time, and stance time variability have consistently been associated with falling whereas step width variability has not been strongly related to falls. The purpose was to examine the linear and nonlinear associations between gait variability and fall history in older persons and to examine the influence of gait speed. METHODS: Gait characteristics and fall history were obtained in 503 older adults (mean age = 79; 61% female) participating in the Cardiovascular Health Study who could ambulate independently. Gait characteristics were recorded from two trials on a 4 meter computerized walkway at the subject's self-selected walking speed. Gait variability was calculated as the coefficient of variation. The presence of a fall in the past 12 months was determined by interview. The nonlinear association between gait variability and fall history was examined using a simple three level classification derived from the distribution of the data and from literature based cut-points. Multivariate logistic regression was used to examine the association between step width variability (extreme or moderate) and fall history stratifying by gait speed (1.0 m/s) and controlling for age and gender. RESULTS: Step length, stance time, and step time variability did not differ with respect to fall history (p > .33). Individuals with extreme step width variability (either low or high step width variability) were more likely to report a fall in the past year than individuals with moderate step width variability. In individuals who walked ≥ 1.0 m/s (n = 281), after controlling for age, gender, and gait speed, compared to individuals with moderate step width variability individuals with either low or high step width variability were more likely to have fallen in the past year (OR and 95% CI 4.38 [1.79–10.72]). The association between step width variability and fall history was not significant in individuals who walked < 1.0 m/s (n = 224). CONCLUSION: Extreme (either too little or too much) step width variability is associated with falls in the past year in older persons who walk at or near normal gait speed and not in older persons who walk slowly (<1.0 m/s)

    Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors

    Get PDF
    Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either 177Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) (177Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the 177Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the 177Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the 177Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the 177Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame. Conclusions Treatment with 177Lu-Dotatate resulted in markedly longer progression-free survival and a significantly higher response rate than high-dose octreotide LAR among patients with advanced midgut neuroendocrine tumors. Preliminary evidence of an overall survival benefit was seen in an interim analysis; confirmation will be required in the planned final analysis. Clinically significant myelosuppression occurred in less than 10% of patients in the 177Lu-Dotatate group. (Funded by Advanced Accelerator Applications; NETTER-1 ClinicalTrials.gov number, NCT01578239 ; EudraCT number 2011-005049-11

    A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions

    Full text link
    We have investigated analitycally the phase diagram of a generalized spherical version of the Blume-Emery-Griffiths model that includes ferromagnetic or antiferromagnetic spin interactions as well as quadrupole interactions in zero and nonzero magnetic field. We show that in three dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM) or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever the magnetic spin interactions dominate over the quadrupole interactions. However, when spin and quadrupole interactions are important, there appears a reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero homogeneous external magnetic field HH, we find no evidence of a transition to the state with spontaneous magnetization for FM interactions in three dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to that described above for zero external magnetic field, except that the critical temperatures are now functions of HH. We also find two critical field values, Hc1H_{c1}, at which the reentrance phenomenon dissapears and Hc2H_{c2} (Hc10.5Hc2H_{c1}\approx 0.5H_{c2}), above which the PM-AFM transition temperature vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6 were improved in presentation. However, all the results remain valid. Accepted for publication in Phys. Rev.
    corecore