3,255 research outputs found

    Parameter-free Stark Broadening of Hydrogen Lines in DA White Dwarfs

    Full text link
    We present new calculations for the Stark broadening of the hydrogen line profiles in the dense atmospheres of white dwarf stars. Our improved model is based on the unified theory of Stark broadening from Vidal, Cooper & Smith, but it also includes non-ideal gas effects from the Hummer & Mihalas occupation probability formalism directly inside the line profile calculations. This approach improves upon previous calculations that relied on the use of an ad-hoc free parameter to describe the dissolution of the line wing opacity in the presence of high electric microfields in the plasma. We present here the first grid of model spectra for hot Teff >~ 12,000 K DA white dwarfs that has no free parameters. The atmospheric parameters obtained from optical and UV spectroscopic observations using these improved models are shown to differ substantially from those published in previous studies.Comment: 8 pages, 8 figures, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    On the Connection Between Metal Absorbers and Quasar Nebulae

    Get PDF
    We establish a simple model for the distribution of cold gas around L* galaxies using a large set of observational constraints on the properties of strong MgII absorber systems. Our analysis suggests that the halos of L* galaxies are filled with cool gaseous clouds having sizes of order 1kpc and densities of ~10^{-2} cm^{-3}. We then investigate the physical effects of cloud irradiation by a quasar and study the resulting spectral signatures. We show that quasar activity gives rise to (i) extended narrow-line emission on ~100kpc scales and (ii) an anisotropy in the properties of the absorbing gas arising from the geometry of the quasar radiation field. Provided that quasars reside in halos several times more massive than those of L* galaxies, our model predictions appear to be in agreement with observations of narrow emission-line nebulae around quasars and the recent detections of ~100kpc cold gaseous envelopes around those objects, suggesting a common origin for these phenomena. We discuss the implications of our results for understanding absorption systems, probing quasar environments at high redshifts, and testing the quasar unification scheme.Comment: 15 pages, 13 figures (ApJ submitted

    Cool White Dwarfs Identified in the Second Data Release of the UKIRT Infrared Deep Sky Survey

    Full text link
    We have paired the Second Data Release of the Large Area Survey of the UKIRT Infrared Deep Sky Survey with the Fifth Data Release of the Sloan Digital Sky Survey to identify ten cool white dwarf candidates, from their photometry and astrometry. Of these ten, one was previously known to be a very cool white dwarf. We have obtained optical spectroscopy for seven of the candidates using the GMOS-N spectrograph on Gemini North, and have confirmed all seven as white dwarfs. Our photometry and astrometry indicates that the remaining two objects are also white dwarfs. Model analysis of the photometry and available spectroscopy shows that the seven confirmed new white dwarfs, and the two new likely white dwarfs, have effective temperatures in the range Teff = 5400-6600 K. Our analysis of the previously known white dwarf confirms that it is cool, with Teff = 3800 K. The cooling age for this dwarf is 8.7 Gyr, while that of the nine ~6000 K white dwarfs is 1.8-3.6 Gyr. We are unable to determine the masses of the white dwarfs from the existing data, and therefore we cannot constrain the total ages of the white dwarfs. The large cooling age for the coolest white dwarf in the sample, combined with its low estimated tangential velocity, suggests that it is an old member of the thin disk, or a member of the thick disk of the Galaxy, with an age 10-11 Gyr. The warmer white dwarfs appear to have velocities typical of the thick disk or even halo; these may be very old remnants of low-mass stars, or they may be relatively young thin disk objects with unusually high space motion.Comment: 37 pages (referee format), 4 tables, 7 figures, accepted to Ap

    Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey

    Full text link
    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey (SDSS) to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint Reduced Proper Motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory, and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T_eff ~ 6000 K. The current followup of 1400 deg2 of sky has produced thirteen new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <= T_eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km/s <= v_tan <= 85 km/s and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <= T_eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km/s <= v_tan <= 100 km/s. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.Comment: To appear in ApJ, accepted April 18 2011. 34 pages include 11 Figures and 5 Table

    Optical properties and spatial distribution of MgII absorbers from SDSS image stacking

    Full text link
    We present a statistical analysis of the photometric properties and spatial distribution of more than 2,800 MgII absorbers with 0.37<z<1 and rest equivalent width W_0(\lambda2796)>0.8\AA detected in SDSS quasar spectra. Using an improved image stacking technique, we measure the cross-correlation between MgII gas and light (in the g, r, i and z-bands) from 10 to 200 kpc and infer the light-weighted impact parameter distribution of MgII absorbers. Such a quantity is well described by a power-law with an index that strongly depends on W_0, ranging from ~-1 for W_0~ 1.5\AA. At redshift 0.37<z<0.55, we find the average luminosity enclosed within 100 kpc around MgII absorbers to be M_g=-20.65+-0.11 mag, which is ~0.5 L_g*. The global luminosity-weighted colors are typical of present-day intermediate type galaxies. However, while the light of weaker absorbers originates mostly from red passive galaxies, stronger systems display the colors of blue star-forming galaxies. Based on these observations, we argue that the origin of strong MgII absorber systems might be better explained by models of metal-enriched gas outflows from star-forming/bursting galaxies. Our analysis does not show any redshift dependence for both impact parameter and rest-frame colors up to z=1. However, we do observe a brightening of the absorbers related light at high redshift (~50% from z~0.4 to 1). We argue that MgII absorbers are a phenomenon typical of a given evolutionary phase that more massive galaxies experience earlier than less massive ones, in a downsizing fashion. (abridged)Comment: ApJ in press, 28 pages, 16 figures, using emulateapj. Only typo corrections wrt the original submission (v1

    A NLTE model atmosphere analysis of the pulsating sdO star SDSS J1600+0748

    Full text link
    We started a program to construct several grids of suitable model atmospheres and synthetic spectra for hot subdwarf O stars computed, for comparative purposes, in LTE, NLTE, with and without metals. For the moment, we use our grids to perform fits on our spectrum of SDSS J160043.6+074802.9 (J1600+0748 for short), this unique pulsating sdO star. Our best fit is currently obtained with NLTE model atmospheres including carbon, nitrogen and oxygen in solar abundances, which leads to the following parameters for SDSS J1600+0748 : Teff = 69 060 +/- 2080 K, log g = 6.00 +/- 0.09 and log N(He)/N(H) = -0.61 +/- 0.06. Improvements are needed, however, particularly for fitting the available He II lines. It is hoped that the inclusion of Fe will help remedy the situation.Comment: 4 pages, 4 figures, accepted in Astrophysics and Space Science (24/02/2010), Special issue Hot sudbwarf star
    corecore