416 research outputs found
Desktop Haptic Interface for Simulation of Hand-Tremor
This paper presents a haptic system that is conceived to support the design process of a class of products or services in order to make them more accessible to people affected by hand tremor diseases. The main aim is to foster the designer empathy allowing her/him to directly feel the effect of the impairment in first person. Specifically, a desktop haptic device is employed to induce a programmable hand-tremor, that is typically observed in people affected by some kind of neurological diseases, on healthy subjects (i.e. the designers). The developed tool is based on a wrist-attached haptic interface with a workspace that is comparable to that of the arm of the user. Such device is able to exert controlled forces on the user's wrist and induces a hand-tremor whose frequency and amplitude are correlated with those measured on impaired people. The control of the device is based on a custom trajectory-tracking algorithm that takes as input tremor signals that are acquired on patients using an optical motion tracking system. In this paper, we present the employed haptic system, the structure of the control system and the experimental validation of the controller done through the acquisition of data on six patients affected by Parkinson's disease
A 6-DOF haptic manipulation system to verify assembly procedures on CAD models
During the design phase of products and before going into production, it is
necessary to verify the presence of mechanical plays, tolerances, and
encumbrances on production mockups. This work introduces a multi-modal system
that allows verifying assembly procedures of products in Virtual Reality
starting directly from CAD models. Thus leveraging the costs and speeding up
the assessment phase in product design. For this purpose, the design of a novel
6-DOF Haptic device is presented. The achieved performance of the system has
been validated in a demonstration scenario employing state-of-the-art
volumetric rendering of interaction forces together with a stereoscopic
visualization setup
Kinematic design of a two contact points haptic interface for the thumb and index fingers of the hand.
This paper presents an integrated approach to the kinematic design of a portable haptic interface for the thumb and index fingers of the hand. The kinematics of the haptic interface was selected on the basis of constructive reasons, design constraints, and usability issues, and in order to guarantee the best level of performance with the lowest encumbrance and weight over the workspace of the hand.
The kinematic dimensioning was the result of a multi-objective optimization of several performance parameters, such as minimum required torque at actuators and maximum reachable workspace, with the simultaneous fulfillment of design constraints, such as satisfactory mechanical stiffness at the end effector, global kinematic isotropy over the workspace, and limited bulk of the device. A geometric interpretation of singularities based on screw theory was formulated to point out both hand postures and movements associated with weaker performance.
The results of the paper were used to build the prototype of a new portable haptic interface with two contact points, whose main design features are also specifically presented
Haptic Hand Exoskeleton for Precision Grasp Simulation
This paper outlines the design and the development of a novel robotic hand exoskeleton (HE) conceived for haptic interaction in the context of virtual reality (VR) and teleoperation (TO) applications. The device allows exerting controlled forces on fingertips of the index and thumb of the operator. The new exoskeleton features several design solutions adopted with the aim of optimizing force accuracy and resolution. The use of remote centers of motion mechanisms allows achieving a compact and lightweight design. An improved stiffness of the transmission and reduced requirements for the electromechanical actuators are obtained thanks to a novel principle for integrating speed reduction into torque transmission systems. A custom designed force sensor and integrated electronics are employed to further improve performances. The electromechanical design of the device and the experimental characterization are presented
A perspective-based analysis of attachment from prenatal period to second year postnatal life
Attachment is one of the foundational themes in the history of the psychological development of human beings. For this reason, we assume that it must be approached by taking into account multiple scientific perspectives. The present review aims at analyzing the state of the art regarding the genetic, neurobiological and cognitive mechanisms underlying the development of attachment bonding, considering the child as the frame of reference. We hypothesize that attachment may be present in prototypical forms even in the prenatal period, thus our analysis has a temporal origin in the intrauterine period preceding birth. The intrauterine period is assumed to be a period of maximum sensitivity to stimuli and in particular to those coming from a potential primary caregiver: the biological mother. We conclude with a reframing of the state of the art and propose that future research work would benefit from a superordinate model of attachment, capable of containing and regulating all its components and variables
Modelling and Experimental Evaluation of a Static Balancing Technique for a new Horizontally Mounted 3-UPU Parallel Mechanism
This paper presents the modelling and experimental evaluation of the gravity compensation of a horizontal 3-UPU parallel mechanism. The conventional Newton-Euler method for static analysis and balancing of mechanisms works for serial robots; however, it can become computationally expensive when applied to the analysis of parallel manipulators. To overcome this difficulty, in this paper we propose an approach, based on a Lagrangian method, that is more efficient in terms of computation time. The derivation of the gravity compensation model is based on the analytical computation of the total potential energy of the system at each position of the end-effector. In order to satisfy the gravity compensation condition, the total potential energy of the system should remain constant for all of the manipulator's configurations. Analytical and mechanical gravity compensation is taken into account, and the set of conditions and the system of springs are defined. Finally, employing a virtual reality environment, some experiments are carried out and the reliability and feasibility of the proposed model are evaluated in the presence and absence of the elastic components
Compliant Actuation Based on Dielectric Elastomers for a Force-Feedback Device: Modeling and Experimental Evaluation
Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE) seem to be a promising technology for the implementation of light and compact force-feedback devices such as, for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivial owing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changing deformations. In this context, the present paper addresses the development of a force feedback controller for an agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliant mechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the visco-hyperelastic nature of the DE material. The model is then linearized and employed for the design of a force controller. The controller employs a position sensor, which determines the actuator configuration, and a force sensor, which measures the interaction force that the actuator exchanges with the environment. In addition, an optimum full-state observer is also implemented, which enables both accurate estimation of the time-dependent behavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminary experimental results are provided to validate the proposed actuator-controller architecture
A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality
This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR). The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (paired t-test, p < 0.02
- …