37,487 research outputs found
Multicanonical Spin Glass Simulations
We report a Monte Carlo simulation of the Edwards-Anderson spin glass
model within the recently introduced multicanonical ensemble. Replica on
lattices of size up to are investigated. Once a true groundstate
is found, we are able to give a lower bound on the number of statistically
independent groundstates sampled. Temperature dependence of the energy, entropy
and other quantities of interest are easily calculable. In particular we report
the groundstate results. Computations involving the spin glass order parameter
are more tedious. Our data indicate that the large increase of the
ergodicity time is reduced to an approximately power law. Altogether the
results suggest that the multicanonical ensemble improves the situation of
simulations for spin glasses and other systems which have to cope with similar
problems of conflicting constraints.Comment: 24 page
Measuring Workload Differences Between Short-term Memory and Long-term Memory Scenarios in a Simulated Flight Environment
Four highly experienced Air Force pilots each flew four simulated flight scenarios. Two scenarios required a great deal of aircraft maneuvering. The other two scenarios involved less maneuvering, but required remembering a number of items. All scenarios were designed to be equaly challenging. Pilot's Subjective Ratings for Activity-level, Complexity, Difficulty, Stress, and Workload were higher for the manuevering scenarios than the memory scenarios. At a moderate workload level, keeping the pilots active resulted in better aircraft control. When required to monitor and remember items, aircraft control tended to decrease. Pilots tended to weigh information about the spatial positioning and performance of their aircraft more heavily than other items
Recent Results of Multimagnetical Simulations of the Ising Model
To investigate order-order interfaces, we perform multimagnetical Monte Carlo
simulations of the and Ising model. Stringent tests of the numerical
methods are performed by reproducing with high precision exact results. In
the physically more interesting case we estimate the amplitude of
the critical interfacial tension.Comment: talk presented at the workshop "Dynamics of First Order Phase
Transitions", Juelich June 1-3; FSU-SCRI-92C-87 preprint; 7 pages; sorry no
figures; needs vanilla.st
Derivation of an integral of Boros and Moll via convolution of Student t-densities
We show that the evaluation of an integral considered by Boros and Moll is a
special case of a convolution result about Student t-densities obtained by the
authors in 2008
The impact of physical and mental tasks on pilot mental workoad
Seven instrument-rated pilots with a wide range of backgrounds and experience levels flew four different scenarios on a fixed-base simulator. The Baseline scenario was the simplest of the four and had few mental and physical tasks. An activity scenario had many physical but few mental tasks. The Planning scenario had few physical and many mental taks. A Combined scenario had high mental and physical task loads. The magnitude of each pilot's altitude and airspeed deviations was measured, subjective workload ratings were recorded, and the degree of pilot compliance with assigned memory/planning tasks was noted. Mental and physical performance was a strong function of the manual activity level, but not influenced by the mental task load. High manual task loads resulted in a large percentage of mental errors even under low mental task loads. Although all the pilots gave similar subjective ratings when the manual task load was high, subjective ratings showed greater individual differences with high mental task loads. Altitude or airspeed deviations and subjective ratings were most correlated when the total task load was very high. Although airspeed deviations, altitude deviations, and subjective workload ratings were similar for both low experience and high experience pilots, at very high total task loads, mental performance was much lower for the low experience pilots
Effect of time span and task load on pilot mental workload
Two sets of experiments were run to examine how the mental workload of a pilot might be measured. The effects of continuous manual control activity versus discrete assigned mental tasks (including the length of time between receiving an assignment and executing it) were examined. The first experiment evaluated the strengths and weaknesses of measuring mental workload with an objective perforamance (altitude deviations) and five subjective ratings (activity level, complexity, difficulty, stress, and workload). The second set of experiments built upon the first set by increasing workload intensities and adding another performance measure: airspeed deviation. The results are discussed for both low and high experience pilots
Metastable π Junction between an s±-Wave and an s-Wave Superconductor
We examine a contact between a superconductor whose order parameter changes sign across the Brillioun zone, and an ordinary, uniform-sign superconductor. Within a Ginzburg-Landau-type model, we find that if the barrier between the two superconductors is not too high, the frustration of the Josephson coupling between different portions of the Fermi surface across the contact can lead to surprising consequences. These include time-reversal symmetry breaking at the interface and unusual energy-phase relations with multiple local minima. We propose this mechanism as a possible explanation for the half-integer flux quantum transitions in composite niobium-iron pnictide superconducting loops, which were discovered in recent experiments [C.-T. Chen et al., Nature Phys. 6, 260 (2010).]
- …