29,226 research outputs found
Hydrogen-methane fuel control systems for turbojet engines
Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel
Energy Efficient Engine: Control system component performance report
An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used
North Atlantic Deep Water Formation
Various studies concerning differing aspects of the North Atlantic are presented. The three major topics under which the works are classified include: (1) oceanography; (2) paleoclimate; and (3) ocean, ice and climate modeling
Control means for a gas turbine engine
A means is provided for developing a signal representative of the actual compressor casing temperature, a second signal representative of compressor inlet gas temperature, and a third signal representative of compressor speed. Another means is provided for receiving the gas temperature and compressor speed signals and developing a schedule output signal which is a representative of a reference casing temperature at which a predetermined compressor blade stabilized clearance is provided. A means is also provided for comparing the actual compressor casing temperature signal and the reference casing temperature signal and developing a clearance control system representative of the difference. The clearance control signal is coupled to a control valve which controls a flow of air to the compressor casing to control the clearance between the compressor blades and the compressor casing. The clearance control signal can be modified to accommodate transient characteristics. Other embodiments are disclosed
Magnetoplasmadynamic thrustor research Final report
Radiation-cooled and water-cooled magnetoplasmadynamic thrustors tested in 10 to kW power range with 1000 to 5000 sec specific impuls
Quantifying nonorthogonality
An exploratory approach to the possibility of analyzing nonorthogonality as a
quantifiable property is presented. Three different measures for the
nonorthogonality of pure states are introduced, and one of these measures is
extended to single-particle density matrices using methods that are similar to
recently introduced techniques for quantifying entanglement. Several
interesting special cases are considered. It is pointed out that a measure of
nonorthogonality can meaningfully be associated with a single mixed quantum
state. It is then shown how nonorthogonality can be unlocked with classical
information; this analysis reveals interesting inequalities and points to a
number of connections between nonorthogonality and entanglement.Comment: Accepted for publication in Phys. Rev.
Difficulty of distinguishing product states locally
Non-locality without entanglement is a rather counter-intuitive phenomenon in
which information may be encoded entirely in product (unentangled) states of
composite quantum systems in such a way that local measurement of the
subsystems is not enough for optimal decoding. For simple examples of pure
product states, the gap in performance is known to be rather small when
arbitrary local strategies are allowed. Here we restrict to local strategies
readily achievable with current technology; those requiring neither a quantum
memory nor joint operations. We show that, even for measurements on pure
product states there can be a large gap between such strategies and
theoretically optimal performance. Thus even in the absence of entanglement
physically realizable local strategies can be far from optimal for extracting
quantum information.Comment: 5 pages, 1 figur
Optimal Entanglement Enhancement for Mixed States
We consider the actions of protocols involving local quantum operations and
classical communication (LQCC) on a single system consisting of two separated
qubits. We give a complete description of the orbits of the space of states
under LQCC and characterise the representatives with maximal entanglement of
formation. We thus obtain a LQCC entanglement concentration protocol for a
single given state (pure or mixed) of two qubits which is optimal in the sense
that the protocol produces, with non-zero probability, a state of maximal
possible entanglement of formation. This defines a new entanglement measure,
the maximum extractable entanglement.Comment: Final version: to appear in Phys. Rev. Let
Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited
We discuss hadronic light-by-light scattering contribution to the muon
anomalous magnetic moment a_\mu^{\rm lbl}, paying particular attention to the
consistent matching between the short- and the long-distance behavior of the
light-by-light scattering amplitude. We argue that the short-distance QCD
imposes strong constraints on this amplitude overlooked in previous analyses.
We find that accounting for these constraints leads to approximately 50 per
cent increase in the central value of a_\mu^{\rm lbl}, compared to existing
estimates. The hadronic light-by-light scattering contribution becomes
a_\mu^{\rm lbl}=136(25) \times 10^{-11}, thereby shifting the Standard Model
prediction closer to the experimental value.Comment: 16 pages, 2 figure
Factoring in a Dissipative Quantum Computer
We describe an array of quantum gates implementing Shor's algorithm for prime
factorization in a quantum computer. The array includes a circuit for modular
exponentiation with several subcomponents (such as controlled multipliers,
adders, etc) which are described in terms of elementary Toffoli gates. We
present a simple analysis of the impact of losses and decoherence on the
performance of this quantum factoring circuit. For that purpose, we simulate a
quantum computer which is running the program to factor N = 15 while
interacting with a dissipative environment. As a consequence of this
interaction randomly selected qubits may spontaneously decay. Using the results
of our numerical simulations we analyze the efficiency of some simple error
correction techniques.Comment: plain tex, 18 pages, 8 postscript figure
- …