859 research outputs found

    Random quantum correlations and density operator distributions

    Get PDF
    Consider the question: what statistical ensemble corresponds to minimal prior knowledge about a quantum system ? For the case where the system is in fact known to be in a pure state there is an obvious answer, corresponding to the unique unitarily-invariant measure on the Hilbert sphere. However, the problem is open for the general case where states are described by density operators. Here two approaches to the problem are investigated. The first approach assumes that the system is randomly correlated with a second system, where the ensemble of composite systems is described by a random pure state. Results for qubits randomly correlated with other systems are presented, including average entanglement entropies. It is shown that maximum correlation is guaranteed in the limit as one system becomes infinite-dimensional. The second approach relies on choosing a metric on the space of density operators, and generating a corresponding ensemble from the induced volume element. Comparisons between the approaches are made for qubits, for which the second approach (based on the Bures metric) yields the most symmetric, and hence the least informative, ensemble of density operators.Comment: 13 pages, no figures; a new page of additional notes at end draws attention to 3 new references and their relevanc

    Estimated workload intensity during volunteer aquarium dives

    Get PDF
    Background: This study aimed to characterize the physiological demands of working dives on volunteer divers at a public aquarium in the USA. Aims: To estimate the workloads associated with volunteer dives in a US aquarium. Methods: Participants completed a medical and diving history questionnaire. Measurements included blood pressure before and after diving and continuous ECG (Holter) monitoring during diving. Dive profiles were recorded using loggers. Mean workload was estimated from total air consumption. Results Twenty-seven divers recorded 49 air dives over 5 days. Two-thirds were male and ages ranged from 40 to 78 years. Typically, each diver made two dives with a 30-60 min surface interval. Mean heart rate while diving was 100 beats per minute (bpm). Mean estimated workload during the dives recorded during this study was 5.8 metabolic equivalents (METS), with a range from 4.1 to 10.5. The highest mean recorded heart rate was 120 bpm over 40 min, vacuuming the floor in the shark exhibit. Conclusions: Given the mean age of this sample and the prevalence of cardiovascular risk factors (body mass index, high cholesterol and hypertension), it may be prudent for aquariums to regularly monitor SAC/kg and heart rate in volunteer divers, to identify which tasks require the highest workload intensity. Divers with existing cardiovascular risk factors might then be employed in dives with lighter workloads. In conclusion, volunteer dives at this aquarium required a mean workload intensity that was described by recreational divers as moderate. The highest workload, at 10 METS for 23 min, would be considered by many recreational divers as exhausting

    \Lambda-buildings and base change functors

    Full text link
    We prove an analog of the base change functor of \Lambda-trees in the setting of generalized affine buildings. The proof is mainly based on local and global combinatorics of the associated spherical buildings. As an application we obtain that the class of generalized affine building is closed under ultracones and asymptotic cones. Other applications involve a complex of groups decompositions and fixed point theorems for certain classes of generalized affine buildings.Comment: revised version, 29 pages, to appear in Geom. Dedicat

    Application of precise 142Nd/144Nd analysis of small samples to inclusions in diamonds (Finsch, South Africa) and Hadean Zircons (Jack Hills, Western Australia)

    Get PDF
    146Sm-142Nd and 147Sm-143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The stud

    A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block

    Full text link
    A protocol for quantum secure direct communication using blocks of EPR pairs is proposed. A set of ordered NN EPR pairs is used as a data block for sending secret message directly. The ordered NN EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender, Alice encodes the secret message directly on the message-coding sequence and send them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev

    Charge Conjugation Invariance of the Vacuum and the Cosmological Constant Problem

    Full text link
    We propose a method of field quantization which uses an indefinite metric in a Hilbert space of state vectors. The action for gravity and the standard model includes, as well as the positive energy fermion and boson fields, negative energy fields. The Hamiltonian for the action leads through charge conjugation invariance symmetry of the vacuum to a cancellation of the zero-point vacuum energy and a vanishing cosmological constant in the presence of a gravitational field. To guarantee the stability of the vacuum, we introduce a Dirac sea `hole' theory of quantization for gravity as well as the standard model. The vacuum is defined to be fully occupied by negative energy particles with a hole in the Dirac sea, corresponding to an anti-particle. We postulate that the negative energy bosons in the vacuum satisfy a para-statistics that leads to a para-Pauli exclusion principle for the negative energy bosons in the vacuum, while the positive energy bosons in the Hilbert space obey the usual Bose-Einstein statistics. This assures that the vacuum is stable for both fermions and bosons. Restrictions on the para-operator Hamiltonian density lead to selection rules that prohibit positive energy para-bosons from being observable. The problem of deriving a positive energy spectrum and a consistent unitary field theory from a pseudo-Hermitian Hamiltonian is investigated.Comment: 15 pages, Latex file, no figures. Typos corrected. To be published in Physics Letters

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres

    Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state

    Get PDF
    We present a protocol for performing entanglement swapping with intense pulsed beams. In a first step, the generation of amplitude correlations between two systems that have never interacted directly is demonstrated. This is verified in direct detection with electronic modulation of the detected photocurrents. The measured correlations are better than expected from a classical reconstruction scheme. In the entanglement swapping process, a four--partite entangled state is generated. We prove experimentally that the amplitudes of the four optical modes are quantum correlated 3 dB below shot noise, which is due to the potential four--party entanglement.Comment: 9 pages, 10 figures, update of references 9 and 10; minor inconsistency in notation removed; format for units in the figures change
    corecore