644 research outputs found

    Cosmological gravitino problem confronts electroweak physics

    Full text link
    A generic feature of gauge-mediated supersymmetry breaking models is that the gravitino is the lightest supersymmetric particle (LSP). In order not to overclose the universe, the gravitino LSP should be light enough (~ 1 keV), or appropriately heavy (~ 1 GeV). We study further constraints on the mass of the gravitino imposed by electroweak experiments, i.e., muon g-2 measurements, electroweak precision measurements, and direct searches for supersymmetric particles at LEP2. We find that the heavy gravitino is strongly disfavored from the lower mass bound on the next-to-LSP. The sufficiently light gravitino, on the other hand, has rather sizable allowed regions in the model parameter space.Comment: 11 pages, 8 figures, version to appear in PR

    Neutrino-induced lepton flavor violation in gauge-mediated supersymmetry breaking

    Full text link
    Gauge-mediated supersymmetry breaking is known to greatly suppress flavor changing neutral current effects. However, we show that gauge mediation in the context of leptogenesis implies potentially large lepton flavor violating signals. If the heavy right-handed neutrinos that participate in leptogenesis are lighter than the messenger scale of gauge mediation, they will induce flavor off-diagonal masses to the sleptons which in turn can induce large effects in mu to e gamma, tau to mu gamma, and mu-e conversion in nuclei. We demonstrate this result and compute numerically the lepton-flavor violating decay and conversion rates in scenarios of direct gauge mediation.Comment: 18 pages, 5 figure

    Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities

    Get PDF
    We analyze the signal processing required for the optimal detection of a stochastic background of gravitational radiation using laser interferometric detectors. Starting with basic assumptions about the statistical properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels required for detection are then calculated. Issues related to: (i) calculating the signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii) performing the data analysis in the presence of nonstationary detector noise, (iii) combining data from multiple detector pairs to increase the sensitivity of a stochastic background search, (iv) correlating the outputs of 4 or more detectors, and (v) allowing for the possibility of correlated noise in the outputs of two detectors are discussed. We briefly describe a computer simulation which mimics the generation and detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous graphs and tables of numerical data for the five major interferometers (LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment given in this paper should be accessible to both theorists involved in data analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE

    Gravitino Dark Matter in the CMSSM and Implications for Leptogenesis and the LHC

    Full text link
    In the framework of the CMSSM we study the gravitino as the lightest supersymmetric particle and the dominant component of cold dark matter in the Universe. We include both a thermal contribution to its relic abundance from scatterings in the plasma and a non--thermal one from neutralino or stau decays after freeze--out. In general both contributions can be important, although in different regions of the parameter space. We further include constraints from BBN on electromagnetic and hadronic showers, from the CMB blackbody spectrum and from collider and non--collider SUSY searches. The region where the neutralino is the next--to--lightest superpartner is severely constrained by a conservative bound from excessive electromagnetic showers and probably basically excluded by the bound from hadronic showers, while the stau case remains mostly allowed. In both regions the constraint from CMB is often important or even dominant. In the stau case, for the assumed reasonable ranges of soft SUSY breaking parameters, we find regions where the gravitino abundance is in agreement with the range inferred from CMB studies, provided that, in many cases, a reheating temperature \treh is large, \treh\sim10^{9}\gev. On the other side, we find an upper bound \treh\lsim 5\times 10^{9}\gev. Less conservative bounds from BBN or an improvement in measuring the CMB spectrum would provide a dramatic squeeze on the whole scenario, in particular it would strongly disfavor the largest values of \treh\sim 10^{9}\gev. The regions favored by the gravitino dark matter scenario are very different from standard regions corresponding to the neutralino dark matter, and will be partly probed at the LHC.Comment: JHEP version, several improvements and update

    Development of a human model for the study of effects of hypoxia, exercise, and sildenafil on cardiac and vascular function in chronic heart failure

    Get PDF
    Background: Pulmonary hypertension is associated with poor outcome in patients with chronic heart failure (CHF) and may be a therapeutic target. Our aims were to develop a noninvasive model for studying pulmonary vasoreactivity in CHF and characterize sildenafil's acute cardiovascular effects. Methods and Results: In a crossover study, 18 patients with CHF participated 4 times [sildenafil (2 × 20 mg)/or placebo (double-blind) while breathing air or 15% oxygen] at rest and during exercise. Oxygen saturation (SaO2) and systemic vascular resistance were recorded. Left and right ventricular (RV) function and transtricuspid systolic pressure gradient (RVTG) were measured echocardiographically. At rest, hypoxia caused SaO2 (P = 0.001) to fall and RVTG to rise (5 ± 4 mm Hg; P = 0.001). Sildenafil reduced SaO2 (−1 ± 2%; P = 0.043), systemic vascular resistance (−87 ± 156 dyn·s−1·cm−2; P = 0.034), and RVTG (−2 ± 5 mm Hg; P = 0.05). Exercise caused cardiac output (2.1 ± 1.8 L/min; P < 0.001) and RVTG (19 ± 11 mm Hg; P < 0.0001) to rise. The reduction in RVTG with sildenafil was not attenuated by hypoxia. The rise in RVTG with exercise was not substantially reduced by sildenafil. Conclusions: Sildenafil reduces SaO2 at rest while breathing air, this was not exacerbated by hypoxia, suggesting increased ventilation–perfusion mismatching due to pulmonary vasodilation in poorly ventilated lung regions. Sildenafil reduces RVTG at rest and prevents increases caused by hypoxia but not by exercise. This study shows the usefulness of this model to evaluate new therapeutics in pulmonary hypertension

    Gravitational field around a time-like current-carrying screwed cosmic string in scalar-tensor theories

    Full text link
    In this paper we obtain the space-time generated by a time-like current-carrying superconducting screwed cosmic string(TCSCS). This gravitational field is obtained in a modified scalar-tensor theory in the sense that torsion is taken into account. We show that this solution is comptible with a torsion field generated by the scalar field ϕ\phi . The analysis of gravitational effects of a TCSCS shows up that the torsion effects that appear in the physical frame of Jordan-Fierz can be described in a geometric form given by contorsion term plus a symmetric part which contains the scalar gradient. As an important application of this solution, we consider the linear perturbation method developed by Zel'dovich, investigate the accretion of cold dark matter due to the formation of wakes when a TCSCS moves with speed vv and discuss the role played by torsion. Our results are compared with those obtained for cosmic strings in the framework of scalar-tensor theories without taking torsion into account.Comment: 21 pages, no figures, Revised Version, presented at the "XXIV- Encontro Nacional de Fisica de Particulas e Campos ", Caxambu, MG, Brazil, to appear in Phys. Rev.

    Continuity of the von Neumann entropy

    Full text link
    A general method for proving continuity of the von Neumann entropy on subsets of positive trace-class operators is considered. This makes it possible to re-derive the known conditions for continuity of the entropy in more general forms and to obtain several new conditions. The method is based on a particular approximation of the von Neumann entropy by an increasing sequence of concave continuous unitary invariant functions defined using decompositions into finite rank operators. The existence of this approximation is a corollary of a general property of the set of quantum states as a convex topological space called the strong stability property. This is considered in the first part of the paper.Comment: 42 pages, the minor changes have been made, the new applications of the continuity condition have been added. To appear in Commun. Math. Phy

    Natural Inflation From Fermion Loops

    Full text link
    ``Natural'' inflationary theories are a class of models in which inflation is driven by a pseudo-Nambu-Goldstone boson. In this paper we consider two models, one old and one new, in which the potential for inflation is generated by loop effects from a fermion sector which explicitly breaks a global U(1)U(1) symmetry. In both models, we retrieve the ``standard'' natural inflation potential, V(θ)=Λ4[1+cos(θ/μ)]V\left(\theta\right) = \Lambda^4\left[1 + \cos\left(\theta / \mu\right)\right], as a limiting case of the exact one-loop potential, but we carry out a general analysis of the models including the limiting case. Constraints from the COBE DMR observation and from theoretical consistency are used to limit the parameters of the models, and successful inflation occurs without the necessity of fine-tuning the parameters.Comment: (Revised) 15 pages, LaTeX (revTeX), 8 figures in uuencoded PostScript format. Version accepted for publication in Phys. Rev. D 15. Corrected definition of power spectrum and added three reference

    Split Fermions in Extra Dimensions and Exponentially Small Cross-Sections at Future Colliders

    Get PDF
    We point out a dramatic new experimental signature for a class of theories with extra dimensions, where quarks and leptons are localized at slightly separated parallel ``walls'' whereas gauge and Higgs fields live in the bulk of the extra dimensions. The separation forbids direct local couplings between quarks and leptons, allowing for an elegant solution to the proton decay problem. We show that scattering cross sections for collisions of fermions which are separated in the extra dimensions vanish exponentially at energies high enough to probe the separation distance. This is because the separation puts a lower bound on the attainable impact parameter in the collision. We present cross sections for two body high energy scattering and estimate the power with which future colliders can probe this scenario, finding sensitivity to inverse fermion separations of order 10-70 TeV.Comment: 18 pages, 3 figure

    Local realizations of contact interactions in two- and three-body problems

    Get PDF
    Mathematically rigorous theory of the two-body contact interaction in three dimension is reviewed. Local potential realizations of this proper contact interaction are given in terms of Poschl-Teller, exponential and square-well potentials. Three body calculation is carried out for the halo nucleus 11Li using adequately represented contact interaction.Comment: submitted to Phys. Rev.
    corecore