118 research outputs found
Surface Scaling Analysis of a Frustrated Spring-network Model for Surfactant-templated Hydrogels
We propose and study a simplified model for the surface and bulk structures
of crosslinked polymer gels, into which voids are introduced through templating
by surfactant micelles. Such systems were recently studied by Atomic Force
Microscopy [M. Chakrapani et al., e-print cond-mat/0112255]. The gel is
represented by a frustrated, triangular network of nodes connected by springs
of random equilibrium lengths. The nodes represent crosslinkers, and the
springs correspond to polymer chains. The boundaries are fixed at the bottom,
free at the top, and periodic in the lateral direction. Voids are introduced by
deleting a proportion of the nodes and their associated springs. The model is
numerically relaxed to a representative local energy minimum, resulting in an
inhomogeneous, ``clumpy'' bulk structure. The free top surface is defined at
evenly spaced points in the lateral (x) direction by the height of the topmost
spring, measured from the bottom layer, h(x). Its scaling properties are
studied by calculating the root-mean-square surface width and the generalized
increment correlation functions C_q(x)= . The surface is
found to have a nontrivial scaling behavior on small length scales, with a
crossover to scale-independent behavior on large scales. As the vacancy
concentration approaches the site-percolation limit, both the crossover length
and the saturation value of the surface width diverge in a manner that appears
to be proportional to the bulk connectivity length. This suggests that a
percolation transition in the bulk also drives a similar divergence observed in
surfactant templated polyacrylamide gels at high surfactant concentrations.Comment: 17 pages RevTex4, 10 imbedded eps figures. Expanded discussion of
multi-affinit
- …