240 research outputs found

    Power converters for ITER

    Get PDF
    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc

    Universal finite size corrections and the central charge in non solvable Ising models

    Full text link
    We investigate a non solvable two-dimensional ferromagnetic Ising model with nearest neighbor plus weak finite range interactions of strength \lambda. We rigorously establish one of the predictions of Conformal Field Theory (CFT), namely the fact that at the critical temperature the finite size corrections to the free energy are universal, in the sense that they are exactly independent of the interaction. The corresponding central charge, defined in terms of the coefficient of the first subleading term to the free energy, as proposed by Affleck and Blote-Cardy-Nightingale, is constant and equal to 1/2 for all 0<\lambda<\lambda_0 and \lambda_0 a small but finite convergence radius. This is one of the very few cases where the predictions of CFT can be rigorously verified starting from a microscopic non solvable statistical model. The proof uses a combination of rigorous renormalization group methods with a novel partition function inequality, valid for ferromagnetic interactions.Comment: 43 pages, 1 figur

    Twistless KAM tori

    Full text link
    A selfcontained proof of the KAM theorem in the Thirring model is discussed.Comment: 7 pages, 50 K, Plain Tex, generates one figure named gvnn.p

    Functional Integral Construction of the Thirring model: axioms verification and massless limit

    Get PDF
    We construct a QFT for the Thirring model for any value of the mass in a functional integral approach, by proving that a set of Grassmann integrals converges, as the cutoffs are removed and for a proper choice of the bare parameters, to a set of Schwinger functions verifying the Osterwalder-Schrader axioms. The corresponding Ward Identities have anomalies which are not linear in the coupling and which violate the anomaly non-renormalization property. Additional anomalies are present in the closed equation for the interacting propagator, obtained by combining a Schwinger-Dyson equation with Ward Identities.Comment: 55 pages, 9 figure

    Skyrmions in a Doped Antiferromagnet

    Full text link
    Magnetization and magnetoresistance have been measured in insulating antiferromagnetic La_{2}Cu_{0.97}Li_{0.03}O_{4} over a wide range of temperatures, magnetic fields, and field orientations. The magnetoresistance step associated with a weak ferromagnetic transition exhibits a striking nonmonotonic temperature dependence, consistent with the presence of skyrmions.Comment: 4+ pages, 3 figures (some low resolution), supplementary material (3 pages); discussion expanded, references added; as publishe

    Incommensurate Charge Density Waves in the adiabatic Hubbard-Holstein model

    Full text link
    The adiabatic, Holstein-Hubbard model describes electrons on a chain with step aa interacting with themselves (with coupling UU) and with a classical phonon field \f_x (with coupling \l). There is Peierls instability if the electronic ground state energy F(\f) as a functional of \f_x has a minimum which corresponds to a periodic function with period πpF{\pi\over p_F}, where pFp_F is the Fermi momentum. We consider pFπa{p_F\over\pi a} irrational so that the CDW is {\it incommensurate} with the chain. We prove in a rigorous way in the spinless case, when \l,U are small and {U\over\l} large, that a)when the electronic interaction is attractive U<0U<0 there is no Peierls instability b)when the interaction is repulsive U>0U>0 there is Peierls instability in the sense that our convergent expansion for F(\f), truncated at the second order, has a minimum which corresponds to an analytical and πpF{\pi\over p_F} periodic \f_x. Such a minimum is found solving an infinite set of coupled self-consistent equations, one for each of the infinite Fourier modes of \f_x.Comment: 16 pages, 1 picture. To appear Phys. Rev.

    Electronic correlations in iron-pnictide superconductors and beyond; what can we learn from optics

    Full text link
    The Coulomb repulsion, impeding electrons' motion, has an important impact on the charge dynamics. It mainly causes a reduction of the effective metallic Drude weight (proportional to the so-called optical kinetic energy), encountered in the optical conductivity, with respect to the expectation within the nearly-free electron limit (defining the so-called band kinetic energy), as evinced from band-structure theory. In principle, the ratio between the optical and band kinetic energy allows defining the degree of electronic correlations. Through spectral weight arguments based on the excitation spectrum, we provide an experimental tool, free from any theoretical or band-structure based assumptions, in order to estimate the degree of electronic correlations in several systems. We first address the novel iron-pnictide superconductors, which serve to set the stage for our approach. We then revisit a large variety of materials, ranging from superconductors, to Kondo-like systems as well as materials close to the Mott-insulating state. As comparison we also tackle materials, where the electron-phonon coupling dominates. We establish a direct relationship between the strength of interaction and the resulting reduction of the optical kinetic energy of the itinerant charge carriers

    Third Order Renormalization Group applied to the attractive one-dimensional Fermi Gas

    Full text link
    We consider a Callan-Symanzik and a Wilson Renormalization Group approach to the infrared problem for interacting fermions in one dimension with backscattering. We compute the third order (two-loop) approximation of the beta function using both methods and compare it with the well known multiplicative Gell-Mann Low approach. We point out a previously unnoticed qualitative dependence of the third order fixed point on an arbitrary dimensionless parameter, which strongly suggest the spurious nature of the fixed point.Comment: 16 pages, Revised version, added comment

    Interplay of spin waves and vortices in the two-dimensional XY model at small vortex-core energy

    Get PDF
    The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes universal vortex unbinding in many two-dimensional systems, including the paradigmatic XY model. However, most of these systems present a complex interplay between excitations at different length scales that complicates theoretical calculations of nonuniversal thermodynamic quantities. These difficulties may be overcome by suitably modifying the initial conditions of the BKT flow equations to account for noncritical fluctuations at small length scales. In this work, we perform a systematic study of the validity and limits of this two-step approach by constructing optimised initial conditions for the BKT flow. We find that the two-step approach can accurately reproduce the results of Monte Carlo simulations of the traditional XY model. To systematically study the interplay between vortices and spin-wave excitations, we introduce a modified XY model with increased vortex fugacity. We present large-scale Monte Carlo simulations of the spin stiffness and vortex density for this modified XY model and show that even at large vortex fugacity, vortex unbinding is accurately described by the nonperturbative functional renormalization group

    Resonant Impurity States in the D-Density-Wave Phase

    Full text link
    We study the electronic structure near impurities in the d-density-wave (DDW) state, a possible candidate phase for the pseudo-gap region of the high-temperature superconductors. We show that the local DOS near a non-magnetic impurity in the DDW state is {\it qualitatively} different from that in a superconductor with dx2y2d_{x^2-y^2}-symmetry. Since this result is a robust feature of the DDW phase, it can help to identify the nature of the two different phases recently observed by scanning tunneling microscopy experiments in the superconducting state of underdoped Bi-2212 compounds
    corecore