The Coulomb repulsion, impeding electrons' motion, has an important impact on
the charge dynamics. It mainly causes a reduction of the effective metallic
Drude weight (proportional to the so-called optical kinetic energy),
encountered in the optical conductivity, with respect to the expectation within
the nearly-free electron limit (defining the so-called band kinetic energy), as
evinced from band-structure theory. In principle, the ratio between the optical
and band kinetic energy allows defining the degree of electronic correlations.
Through spectral weight arguments based on the excitation spectrum, we provide
an experimental tool, free from any theoretical or band-structure based
assumptions, in order to estimate the degree of electronic correlations in
several systems. We first address the novel iron-pnictide superconductors,
which serve to set the stage for our approach. We then revisit a large variety
of materials, ranging from superconductors, to Kondo-like systems as well as
materials close to the Mott-insulating state. As comparison we also tackle
materials, where the electron-phonon coupling dominates. We establish a direct
relationship between the strength of interaction and the resulting reduction of
the optical kinetic energy of the itinerant charge carriers