839 research outputs found

    Beam-Breakup Instability Theory for Energy Recovery Linacs

    Full text link
    Here we will derive the general theory of the beam-breakup instability in recirculating linear accelerators, in which the bunches do not have to be at the same RF phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs) where bunches are recirculated at a decelerating phase of the RF wave and for other recirculator arrangements where different RF phases are of an advantage. Furthermore it can be used for the analysis of phase errors of recirculated bunches. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. The general formulas are then analyzed for several analytically solvable cases, which show: (a) Why different higher order modes (HOM) in one cavity do not couple so that the most dangerous modes can be considered individually. (b) How different HOM frequencies have to be in order to consider them separately. (c) That no optics can cause the HOMs of two cavities to cancel. (d) How an optics can avoid the addition of the instabilities of two cavities. (e) How a HOM in a multiple-turn recirculator interferes with itself. Furthermore, a simple method to compute the orbit deviations produced by cavity misalignments has also been introduced. It is shown that the BBU instability always occurs before the orbit excursion becomes very large.Comment: 12 pages, 6 figure

    Ferrite-damped higher-order mode study in the Brookhaven energy-recovery linac cavity

    Get PDF
    A superconducting energy-recovery linac (ERL) is under construction at Brookhaven National Laboratory (BNL) to serve as a test bed for an application to upgrades of the Relativistic Heavy Ion Collider (RHIC). The damping of higher-order modes in the superconducting five-cell cavity is of paramount importance and represents the topic of this paper. Achieving the damping by the exclusive use of two ferrite absorbers and the adoption of a space-saving step instead of the conventional taper are part of the exploratory study. Absorber properties which are portable to simulation programs for the ERL cavity have been obtained by measuring the absorber as a ferrite-loaded pill-box cavity. Measured and simulated results for the lowest dipole modes in the prototype copper cavity with one absorber are discussed. First room-temperature measurements of the fully assembled niobium cavity string are presented which confirm the effective damping of higher-order modes by the ferrite absorbers, and which give credibility to the simulated R over Q's in the ERL.open1

    Coupled-Bunch Beam Breakup due to Resistive-Wall Wake

    Full text link
    The coupled-bunch beam breakup problem excited by the resistive wall wake is formulated. An approximate analytic method of finding the asymptotic behavior of the transverse bunch displacement is developed and solved.Comment: 8 page

    Collective Effects in the Rhic-Ii Electron Cooler

    Get PDF
    Electron cooling at RHIC-I1 upgrade imposes strict requirements on the quality of the electron beam at the cooling section. Beam current dependent effects such as the space charge, wake fields, CSR in bending magnets, trapped ions, etc., will tend to spoil the beam quality and decrease the cooling efficiency. In this paper, we estimate the defocusing effect of the space charge at the cooling section and describe our plan to compensate the defocusing space charge force by focusing solenoids. We also estimate the energy and emittance growth cased by wake fields. Finally, we discuss ion trapping in the electron cooler and consider different techniques to minimize the effect of ion trapping
    corecore