20 research outputs found
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
Hard Photodisintegration of a Proton Pair
We present a study of high energy photodisintegration of proton-pairs through
the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used
in kinematics corresponding to a proton pair with high relative momentum and a
neutron nearly at rest. The s-11 scaling of the cross section, as predicted by
the constituent counting rule for two nucleon photodisintegration, was observed
for the first time. The onset of the scaling is at a higher energy and the
cross section is significantly lower than for deuteron (pn pair)
photodisintegration. For photon energies below the scaling region, the scaled
cross section was found to present a strong energy-dependent structure not
observed in deuteron photodisintegration.Comment: 7 pages, 3 figures, for submission to Phys. Lett.
Momentum transfer dependence of nuclear transparency from the quasielastic 12C(e,e’p) reaction
The cross section for quasielastic 12C(e,e’p) scattering has been measured at momentum transfer Q2=1, 3, 5, and 6.8 (GeV/c)2. The results are consistent with scattering from a single nucleon as the dominant process. The nuclear transparency is obtained and compared with theoretical calculations that incorporate color transparency effects. No significant rise of the transparency with Q2 is observed
Inclusive electron scattering from nuclei at x≃1
The inclusive A(e,e′) cross section for x≃1 was measured on 2H, C, Fe, and Au for momentum transfers Q2 from 1 to 6.8 (GeV/c)2. The scaling behavior of the data was examined in the region of transition from y scaling to x scaling. Throughout this transitional region, the data exhibit ξ scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering
Two-Body Photodisintegration of the Deuteron up to 2.8 GeV
Measurements were performed for the photodisintegration cross section of the deuteron for photon energies from 1.6 to 2.8 GeV and center-of-mass angles from 37° to 90°. The measured energy dependence of the cross section at θc.m.=90° is in agreement with the constituent counting rules