1,700 research outputs found
Comparative effectiveness of diversion of cerebrospinal fluid for children with severe traumatic brain injury
Importance: Diversion of cerebrospinal fluid (CSF) has been used for decades as a treatment for children with severe traumatic brain injury (TBI) and is recommended by evidenced-based guidelines. However, these recommendations are based on limited studies.
Objective: To determine whether CSF diversion is associated with improved Glasgow Outcome Score-Extended for Pediatrics (GOS-EP) and decreased intracranial pressure (ICP) in children with severe TBI.
Design, Setting, and Participants: This observational comparative effectiveness study was performed at 51 clinical centers that routinely care for children with severe TBI in 8 countries (US, United Kingdom, Spain, the Netherlands, Australia, New Zealand, South Africa, and India) from February 2014 to September 2017, with follow-up at 6 months after injury (final follow-up, October 22, 2021). Children with severe TBI were included if they had Glasgow Coma Scale (GCS) scores of 8 or lower, had intracranial pressure (ICP) monitor placed on-site, and were aged younger than 18 years. Children were excluded if they were pregnant or an ICP monitor was not placed at the study site. Consecutive children were screened and enrolled, data regarding treatments were collected, and at discharge, consent was obtained for outcomes testing. Propensity matching for pretreatment characteristics was performed to develop matched pairs for primary analysis. Data analyses were completed on April 18, 2022.
Exposures: Clinical care followed local standards, including the use of CSF diversion (or not), with patients stratified at the time of ICP monitor placement (CSF group vs no CSF group).
Main Outcomes and Measures: The primary outcome was GOS-EP at 6 months, while ICP was considered as a secondary outcome. CSF vs no CSF was treated as an intention-to-treat analysis, and a sensitivity analysis was performed for children who received delayed CSF diversion.
Results: A total of 1000 children with TBI were enrolled, including 314 who received CSF diversion (mean [SD] age, 7.18 [5.45] years; 208 [66.2%] boys) and 686 who did not (mean [SD] age, 7.79 [5.33] years; 437 [63.7%] boys). The propensity-matched analysis included 98 pairs. In propensity score-matched analyses, there was no difference between groups in GOS-EP (median [IQR] difference, 0 [-3 to 1]; P = .08), but there was a decrease in overall ICP in the CSF group (mean [SD] difference, 3.97 [0.12] mm Hg; P \u3c .001).
Conclusions and Relevance: In this comparative effectiveness study, CSF diversion was not associated with improved outcome at 6 months after TBI, but a decrease in ICP was observed. Given the higher quality of evidence generated by this study, current evidence-based guidelines related to CSF diversion should be reconsidered
Evaluating the use of rCBV as a tumor grade and treatment response classifier across NCI Quantitative Imaging Network sites: Part II of the DSC-MRI digital reference object (DRO) challenge
We have previously characterized the reproducibility of brain tumor relative cerebral blood volume (rCBV) using a dynamic susceptibility contrast magnetic resonance imaging digital reference object across 12 sites using a range of imaging protocols and software platforms. As expected, reproducibility was highest when imaging protocols and software were consistent, but decreased when they were variable. Our goal in this study was to determine the impact of rCBV reproducibility for tumor grade and treatment response classification. We found that varying imaging protocols and software platforms produced a range of optimal thresholds for both tumor grading and treatment response, but the performance of these thresholds was similar. These findings further underscore the importance of standardizing acquisition and analysis protocols across sites and software benchmarking
Fundamental Aspects of the ISM Fractality
The ubiquitous clumpy state of the ISM raises a fundamental and open problem
of physics, which is the correct statistical treatment of systems dominated by
long range interactions. A simple solvable hierarchical model is presented
which explains why systems dominated by gravity prefer to adopt a fractal
dimension around 2 or less, like the cold ISM and large scale structures. This
has direct relation with the general transparency, or blackness, of the
Universe.Comment: 6 pages, LaTeX2e, crckapb macro, no figure, uuencoded compressed tar
file. To be published in the proceeedings of the "Dust-Morphology"
conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer
Dordrecht
Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities
This white paper presents a series of perspectives on current and future phytobiome management, discussed at the Wild and Tamed Phytobiomes Symposium in University Park, PA, USA, in June 2018. To enhance plant productivity and health, and to translate lab- and greenhouse-based phytobiome research to field applications, the academic community and end-users need to address a variety of scientific, practical, and social challenges. Prior discussion of phytobiomes has focused heavily on plant-associated bacterial and fungal assemblages, but the phytobiomes concept covers all factors that influence plant function. Here we discuss various management considerations, including abiotic conditions (e.g. soil, nutrient applications), microorganisms (e.g. bacterial and fungal assemblages, bacterial and fungal inoculants, viruses), macroorganisms (e.g. arthropods, plant genetics), and societal factors (e.g. communication approaches, technology diffusion). An important near-term goal for this field should be to estimate the potential relative contribution of different components of the phytobiome to plant health, as well as the potential and risk of modifying each in the near-future
Structural insights on TRPV5 gating by endogenous modulators.
TRPV5 is a transient receptor potential channel involved in calcium reabsorption. Here we investigate the interaction of two endogenous modulators with TRPV5. Both phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and calmodulin (CaM) have been shown to directly bind to TRPV5 and activate or inactivate the channel, respectively. Using cryo-electron microscopy (cryo-EM), we determined TRPV5 structures in the presence of dioctanoyl PI(4,5)P2 and CaM. The PI(4,5)P2 structure reveals a binding site between the N-linker, S4-S5 linker and S6 helix of TRPV5. These interactions with PI(4,5)P2 induce conformational rearrangements in the lower gate, opening the channel. The CaM structure reveals two TRPV5 C-terminal peptides anchoring a single CaM molecule and that calcium inhibition is mediated through a cation-Ď€ interaction between Lys116 on the C-lobe of calcium-activated CaM and Trp583 at the intracellular gate of TRPV5. Overall, this investigation provides insight into the endogenous modulation of TRPV5, which has the potential to guide drug discovery
History-sensitive versus future-sensitive approaches to security in distributed systems
We consider the use of aspect-oriented techniques as a flexible way to deal
with security policies in distributed systems. Recent work suggests to use
aspects for analysing the future behaviour of programs and to make access
control decisions based on this; this gives the flavour of dealing with
information flow rather than mere access control. We show in this paper that it
is beneficial to augment this approach with history-based components as is the
traditional approach in reference monitor-based approaches to mandatory access
control. Our developments are performed in an aspect-oriented coordination
language aiming to describe the Bell-LaPadula policy as elegantly as possible.
Furthermore, the resulting language has the capability of combining both
history- and future-sensitive policies, providing even more flexibility and
power.Comment: In Proceedings ICE 2010, arXiv:1010.530
Recommended from our members
Overview of the Initial NSTX Experimental Results
The main aim of the National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the spherical torus (ST) concept. The NSTX device began plasma operations in February 1999 and the plasma current Ip was successfully brought up to the design value of 1 million amperes on December 14, 1999. The planned plasma shaping parameters, k = 1.6 {+-} 2.2 and d = 0.2 {+-} 0.4, were achieved in inner limited, single null and double null configurations. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments were also initiated. A CHI injected current of 27 kA produced up to 260 kA of toroidal current without using an ohmic solenoid. With an injection of 2.3 MW of HHFW power, using twelve antennas connected to six transmitters, electrons were heated from a central temperature of 400 eV to 900 eV at a centraldensity of 3.5 x 1013 cm-3 increasing the plasma energy to 59 kJ and the toroidal beta, bT to 10 %. Finally, the NBI system commenced operatio n in Sept. 2000. The initial results with two ion sources (PNBI = 2.8 MW) shows good heating, producing a total plasma stored energy of 90 kJ corresponding to bT = 18 % at a plasma current of 1.1 M
- …