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The use of rCBV as a response metric in clinical trials has been hampered, in part, due to variations in the
biomarker consistency and associated interpretation across sites, stemming from differences in image acquisi-
tion and post-processing methods. This study leveraged a dynamic susceptibility contrast magnetic resonance
imaging digital reference object to characterize rCBV consistency across 12 sites participating in the Quanti-
tative Imaging Network (QIN), specifically focusing on differences in site-specific imaging protocols (IPs; n �
17), and PMs (n � 19) and differences due to site-specific IPs and PMs (n � 25). Thus, high agreement
across sites occurs when 1 managing center processes rCBV despite slight variations in the IP. This result is
most likely supported by current initiatives to standardize IPs. However, marked intersite disagreement was
observed when site-specific software was applied for rCBV measurements. This study’s results have important
implications for comparing rCBV values across sites and trials, where variability in PMs could confound the
comparison of therapeutic effectiveness and/or any attempts to establish thresholds for categorical response
to therapy. To overcome these challenges and ensure the successful use of rCBV as a clinical trial biomarker,
we recommend the establishment of qualifying and validating site- and trial-specific criteria for scanners and
acquisition methods (eg, using a validated phantom) and the software tools used for dynamic susceptibility
contrast magnetic resonance imaging analysis (eg, using a digital reference object where the ground truth is
known).

INTRODUCTION
The relative cerebral blood volume (rCBV), derived from dy-
namic susceptibility contrast magnetic resonance imaging
(DSC-MRI), is an established biomarker of glioma status that can

aid in diagnosis (1), detecting treatment response (2, 3), guiding
biopsies (4, 5), and reliable differentiation of post-treatment
radiation effects and tumor progression (6-10). It is also increas-
ingly leveraged as a biomarker of early therapeutic response in
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clinical trials (11, 12). However, variations in image acquisition
and postprocessing methods (PMs) can limit rCBV reproducibil-
ity, potentially diminishing its clinical utility. To promote rCBV
reproducibility across institutions, many national initiatives are
underway to standardize DSC-MRI acquisition and PMs, includ-
ing National Cancer Institute’s Quantitative Imaging Network
(QIN), Radiological Society of North America’s Quantitative Im-
aging Biomarkers Alliance (QIBA), and the National Brain Tu-
mor Society’s Jumpstarting Brain Tumor Drug Development
Coalition. Recent imaging protocol (IP) recommendations by the
American Society of Functional Neuroradiology (ASFNR) has
served as the first step in standardizing DSC-MRI protocols for
clinical applications (13).

To aid in this effort, 12 institutions within the QIN aimed to
investigate and determine the current rCBV reproducibility us-
ing a recently developed and validated in silico digital reference
object (DRO) that is representative of a wide range of possible
glioma magnetic resonance signals (14). Leveraging this DRO
enables us as a community to determine the multisite consis-
tency in rCBV owing to varying permutations of imaging ac-
quisition parameters and postprocessing steps. In specific, our
goals are to characterize rCBV consistency under conditions
where there exist: (1) variations in the site-specific imaging
acquisition parameters (PMs held constant), (2) variations in
only site-specific PMs (IP held constant), and (3) variations
owing to site-specific imaging and postprocessing protocols.
Results from this community-based challenge will help steer
standardization of DSC-MRI rCBV protocols with the hope that
it can be successfully translated to the clinical setting.

MATERIALS AND METHODS
This National Cancer Institute QIN DSC-DRO challenge project
was proposed and organized by the investigators at Barrow
Neurological Institute (BNI). Eleven centers participated in this
project: BNI (the managing center), Brown University (BU), Mas-
sachusetts General Hospital (MGH), Mayo Clinic Arizona (Mayo
AZ), Mayo Clinic Minnesota (Mayo MN), Medical College of
Wisconsin (MCW), University of Michigan (UM1), The Univer-
sity of Texas Health at San Antonio (UTSA), University of Texas
at Austin (UT), University of Texas Southwestern Medical Center
at Dallas (UTSW), University of Washington (UW), and Wash-
ington University (WashU). Unless specifically named, these
participating sites have been anonymized, in no particular order,
and will be referred to as sites 01–12 as seen in Table 1.

This project comprised 3 phases, summarized in the last 3
columns of Table 1, to evaluate the influence of IPs and/or PMs
on multisite consistency:

• Phase I (“site IP w/constant PM”) involved each participat-
ing site to submit their current clinical DSC IP to the
managing center. The managing center then simulated site-
specific DROs reflecting the IP parameters provided. Some
sites provided �1 IP owing to differences in field strengths
(sites 01, 04, and 05), dosing schemes (sites 03 and 10), and
acquisition method (site 04). In total, 19 different IPs were
submitted. The managing center postprocessed (specific
details below in “Site-specific IP and PM”) rCBV maps of

each of these submitted site-specific IP DROs to evaluate
differences owing to the IP provided.

• Phase II (“constant IP w/site PM”) involved analysis of a
“standard imaging protocol” (SIP), which represents DSC-
MRI data acquired using the IP recommended by ASFNR
(13). Each site was asked to process DSC-MRI DRO data
derived from the SIP. Some sites choose to use multiple
commercially available software packages (site 03) and
different rCBV definitions (sites 05, 06, 12), yielding a total
of 17 submitted rCBV maps.

• Phase III (“site IP w/site PM”) required each site to calculate
rCBV maps using their PM of choice and the site-specific
DRO data. Combining the possible permutations owing to
choice of IP and PM from phases I–II, a total of 25 rCBV
maps were submitted.

All sites but 1 completed all 3 phases of the challenge. Site 11
completed only phase I, and these results are included in this
study.

DRO Simulations
The DSC-MRI signals for each IP were simulated using a recently
developed and validated population-based DRO that was trained
to generate realistic signals using in vivo data from �40 000
voxels derived from patient data (14). The resulting DRO, which
contains 10 000 unique voxels, reflects the distribution of per-
fusion, permeability, precontrast T1, T2*, diffusion coefficients,
and the vascular and cellular features found in patients with
high-grade glioma. Using this DRO, the DSC-MRI signals and
resulting rCBV values can be computed for any combination of
preload dosing scheme, contrast agent choice (by varying T1
relaxivities specific to the contrast agent), pulse sequence pa-
rameters, and postprocessing protocol. For the purposes of this
study, the DRO consisted of tumor voxels simulated under two
blood-brain-barrier (BBB) conditions to recapitulate DSC-MRI
signals from an intact-BBB (Ktrans � 0) and a disrupted-BBB
(Ktrans � 0). In addition to the tumor voxels, normal appearing
white matter (NAWM) voxels (Ktrans � 0) were simulated to
normalize CBV. For the purposes of comparing site-to-site con-
sistency, the SIP that has been postprocessed by the managing
center was considered the reference standard where necessary.
In our recent study, focused on investigating the influence of IP
on CBV fidelity (15), the SIP yielded CBV values, when corrected
for contrast agent leakage, that were among the most accurate.

Site-Specific IP and PM Methods
Site-specific IP and PM methods are briefly listed in Table 1.
Overall, IPs were similar across sites. Most sites submitted clin-
ical DSC IPs for 3 T with 3 sites that also included a 1.5 T IP.
Overall, the following were the imaging parameters [mode (min-
max)]: repetition time � 1500 milliseconds (1300–2560 milli-
seconds), echo time (TE) � 30 milliseconds (18–71 millisec-
onds), flip angle � 60° (60°–90°), preload dose � 0.05 mmol/kg
(0–0.1 mmol/kg), and injection dose � 0.1 mmol/kg (0.05–0.15
mmol/kg). Five different gadolinium contrast agents were used
across the 12 sites: gadobenate (n � 5), gadobutrol (n � 3), gad-
oterate (n � 2), gadoteridol (n � 1), and gadopentetate (n � 1). For
PMs, there was a mix of software options used, including in-house-
based software scripts (n � 4), IB Neuro (n � 4), 3D Slicer (n � 1),
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nordicICE (n � 1), PGUI (n � 2), and Philips IntelliSpace Portal
(ISP; Philips Healthcare, Best, the Netherlands) (n � 1).

For PM methods, most sites defined rCBV �
�0
t �R2,tumor�BSW

� ⁄�0
t �R2,NAWM

� and used the Boxerman–Schmain-
da–Weiskoff (BSW) method for leakage correction (16). A few
sites submitted results that deviated from this postprocessing
convention by alternative rCBV definitions (S06, S12) and dif-
ferences in integration limits as determined by the software
(S05). These differences are highlighted in Table 1. Site 06
defined CBV by the area under the curve of the deconvolved
residue function. This deconvolved residue function was deter-
mined by singular value decompositions (rCBV definition 1) and

by oscillating singular value decompositions approach (rCBV
definition 2). S12 used 3 different rCBV definitions within the
Philips ISP platform: a “model-free” option that integrates the
area underneath the signal intensity curve (rCBV definition 1)
(17), a “�-variate” option that integrates the area underneath the
signal intensity curve that has been fit to a �-variate function
(rCBV definition 2), and a “leakage correction” option that
integrates the area underneath the computed delta R2* curve
after a modified BSW leakage correction method is applied
(rCBV definition 3). To be clear, the first 2 options of the Philips
ISP do not apply any sort of leakage correction algorithm to the
data. S05 included CBV maps calculated using the default inte-

Table 1. Summary of Participating Teams’ IPs and PMs

Site
Number

Imaging Protocol (IP)

CA
Processing Method

(PM)

ID Tag for AnalysisScan Protocol Dose Protocol

Field
Strength

TR
(ms)

TE
(ms) Flip

Preload
(mmol/kg)

Injection
(mmol/kg)

Time
Between

(min)

Site IP
w/Constant

PP

Constant IP
w/Site

PP

Site IP
w/Site

PP

01 01:3.0 T 1500 30 60 0.05 0.10 3 Gadobenate 01: In-house processing S01_IP01 S01_PM01 S01_IP01_PM01

02:1.5 T 1500 30 60 0.05 0.10 3 Gadobenate S01_IP02 S01_IP02_PM01

02 01:3.0 T 1600 30 60 0 0.1 n/a Gadobenate 01: IB Neuro S02_IP01 S02_PM01 S02_IP01_PM01

03 01:3.0 T 1500 31 90 0.05 0.15 6.5 Gadoterate 01: 3DSlicer S03_IP01 S03_PM01 S03_IP01_PM01

02:3.0 T 1500 31 90 0.1 0.1 6.5 Gadoterate 02: nordicICE S03_IP02 S03_PM02 S03_IP01_PM02

03: PGUI S03_PM03 S03_IP01_PM03

S03_IP02_PM01

S03_IP02_PM02

S03_IP02_PM03

04 01:3.0 T 1500 30 80 0.10 0.10 5 Gadobutrol 01: IB Neuro S04_IP01 S04_PM01 S04_IP01_PM01

02:3.0 T 1500 2,35 80 0 0.10 n/a Gadobutrol S04_IP02 n/a

03:1.5 T 1500 30 72 0.10 0.10 5 Gadobutrol S04_IP03 S04_IP03_PM01

04:1.5 T 1500 2,35 72 0 0.10 n/a Gadobutrol S04_IP04 n/a

05 01:3.0 T 1300 30 60 0.025 0.10 5 Gadobutrol 01: IB Neuro (Integration
limits 1)

S05_IP01 S05_PM01 S05_IP01_PM01

02:1.5 T 1300 30 60 0.025 0.10 5 Gadobutrol 02: IB Neuro (Integration
limits 2)

S05_IP02 S05_PM02 S05_IP01_PM02

S05_IP02_PM01

S05_IP02_PM02

06 01:3.0 T 1500 30 75 0.10 0.10 5 Gadoteridol 01: PGUI (rCBV definition 1) S06_IP01 S06_PM01 S06_IP01_PM01

02: PGUI (rCBV definition 2) S06_PM02 S06_IP01_PM01

07 01:3.0 T 1500 30 65 0.025 0.075 6 Gadobenate 01: In-house processing S07_IP01 S07_PM01 S07_IP01_PM01

08 01:3.0 T 1500 21 60 0.10 0.05 6 Gadobenate 01: In-house processing S08_IP01 S08_PM01 S08_IP01_PM01

09 01:3.0 T 1500 18 60 0.05 0.05 6 Gadobenate 01: IB Neuro S09_IP01 S09_PM01 S09_IP01_PM01

10 01:3.0 T 1900 36 90 0 0.10 n/a Gadoterate 01: In-house processing S10_IP01 S10_PM01 S10_IP01_PM01

02:3.0 T 1900 36 90 0.10 0.10 5 Gadoterate S10_IP02 S10_IP02_PM01

11 01:3.0 T 2560 71 90 0.025 0.10 2 Gadopentetate n/a S11_IP01 n/a n/a

12 01:3.0 T 1757 30 90 0.033 0.067 8 Gadobutrol 01: Philips ISP (rCBV
definition 1)

S12_IP01 S12_PM01 S12_IP01_PM01

02: Philips ISP (rCBV
definition 2)

S12_PM02 S12_IP01_PM02

03: Philips ISP (rCBV
definition 3)

S12_PM03 S12_IP01_PM03

Standard
Protocol

01:3.0 T 1500 30 60 0.10 0.10 5 Gadopentetate n/a SIP n/a n/a

Totala: 12 19 17 25

a Excludes the standard protocol.
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gration limits set by IB Neuro (integration limits 1) and manu-
ally chose all time points in IB Neuro (integration limits 2). A
little less than 50% of the submitted rCBV maps were normalized
to the NAWM. To compare maps, the managing site normalized
tumor CBV to the mean NAWM CBV of all pixels when neces-
sary. Specifics on site-specific postprocessing steps are outlined
in Table 2.

The managing center postprocessed the site-specific DROs with
an in-house script by defining rCBV � �0

120sec �R2,tumor�BSW
� ⁄�0120sec

�R2,NAWM
� , where the conventional �R2

� curves in the tumor were
corrected for leakage effects using the BSW method. In our recent
study, the CBV was found to be the most accurate by using these
specific PM steps, and thus was chosen to be used as the reference

where applicable (15). No thresholding, smoothing, or quality assess-
ment was done before rCBV calculations when analyzed by the man-
aging center.

Statistics
To evaluate the consistency of rCBV across sites owing to dif-
ferences between IP and PM, the intraclass correlation coeffi-
cient (ICC) was calculated. Furthermore, to evaluate the agree-
ment of rCBV between sites and a reference (SIP), the 95% limits
of agreement (LOA) were extracted from a Bland–Altman anal-
ysis. Variability of rCBV was assessed across a distribution of
rCBV values by calculating the covariance (CV) across sites.
Lastly, Lin’s correlation coefficient was calculated for rCBV

Table 2. Summary of Participating Teams’ PMs

Site
Number Software CBV Definition

Normalized
to NAWM? Integration Limits

Leakage Correction
Method Comments

01 01: In-house processing AUC of the �R2* time
course

No Time points: 2 to 64 (93 sec) BSW leakage correction
method

Manual inspection of pre-
and post- contrast
points for rCBV
integration

02 01: IB Neuro AUC of the �R2* time
course

Yes automatically detected
(default option)

BSW leakage correction
method

Default IB Neuro settings
for rCBV

03 01: 3DSlicer AUC of the �R2* time
course

No 118 seconds BSW leakage correction
method

No thresholding

02: nordicICE AUC of the �R2* time
course

Yes Time points: 2 to 121
(178.5 sec)

BSW leakage correction
method

03: PGUI AUC of the �R2* time
course

No Time points: 2 to 121
(178.5 sec)

BSW leakage correction
method

No thresholding, but
smoothing applied

04 01: IB Neuro AUC of the �R2* time
course

Yes automatically detected
(default option)

BSW leakage correction
method

05 01: IB Neuro (Integration limits 1) AUC of the �R2* time
course

Yes automatically detected
(default option)

BSW leakage correction
method

02: IB Neuro (Integration limits 2) AUC of the �R2* time
course

Yes 180 seconds (all time
points)

BSW leakage correction
method

06 01: PGUI (rCBV definition 1) Deconvolution of the
residue function
(SVD)

No Time points: 5 to 121
(174 sec)

BSW leakage correction
method

02: PGUI (rCBV definition 2) Deconvolution of the
residue function
(oSVD)

No Time points: 5 to 121
(174 sec)

BSW leakage correction
method

07 01: In-house processing AUC of the �R2* time
course

No automatically detected
(default option)

BSW leakage correction
method

08 01: In-house processing AUC of the �R2* time
course

Yes 90 sec BSW leakage correction
method

09 01: IB Neuro AUC of the �R2* time
course

Yes automatically detected
(default option)

BSW leakage correction
method

Did not use the entire
NAWM ROI - instead
used a 6 mm � 6 mm
(�225 pixels) ROI

10 01: In-house processing AUC of the �R2* time
course

No 171 sec BSW leakage correction
method

�R2* maps were
smoothed with a 5 �

5 Gaussian window
that had an FWHM
value of 3 mm

11 n/a

12 01: Philips ISP (rCBV definition 1) AUC of the SI time
course

No Based on the characteristics
of signal time curves

No leakage correction
method

02: Philips ISP (rCBV definition 2) AUC of the SI time
course fitted to a
gamma-variate

No Based on the characteristics
of signal time curves

No leakage correction
method

03: Philips ISP (rCBV definition 3) AUC of the �R2* time
course

No 180 s BSW leakage correction
method
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between the intact-BBB and disrupted-BBB DROs for each per-
mutation of IP and PM to determine the agreement of rCBV after
leakage correction was applied. All statistical calculations were
done in MATLAB R2018a (The MathWorks Inc., Natick, MA) by
the managing center.

RESULTS
In general, the ICC decreases when Ktrans � 0, that is, disrupted-
BBB (Table 3) for all the 3 phases of this study. High agreement
is observed across sites when a constant PM is applied to site-
specific IP (ICC � 0.879). However, when site-specific PMs are
applied to either a constant IP or to their site-specific IP, the
agreement is quite poor (ICC � 0.439 and 0.380, respectively).

Figure 1 shows consistency in rCBV measurements for all 3
phases of this study when compared with the reference. For each
site, the 95% LOA of both Ktrans � 0 (gray lines, intact-BBB) and
Ktrans � 0 (black lines, disrupted-BBB) are indicated in compar-
ison to the reference (see Table 1 for site ID descriptions). For
phase I (Figure 1A), the 95% LOA are generally fairly narrow and
centered around the mean rCBV of the reference for the Ktrans �
0 case. A few exceptions (S02_IP01, S10_IP01, and S12_IP01)
show larger 95% LOA and a negative bias compared with the
other sites. The first 2 sites (S02 and S10) did not use a contrast
agent preload unlike the other sites, while the third site (S12)
used 1/3 standard dose for a preload. Sites S09_IP01 and
S10_IP01, although centered around the reference’s mean rCBV,
also express wider ranges of 95% LOA compared with other sites.
These 2 sites have markedly lower TE and use less than a full
standard dose compared with the other sites. Much larger LOA are
seen for phase II in Figure 1B) than for that in Figure 1A. Large 95%

LOA are observed for even the Ktrans � 0 case, where no leakage
correction is applied during postprocessing. The analysis software
that show the smallest 95% LOA with the reference are in-house
processing scrips (S01_PM01, S08_PM01), IB Neuro (S02_PM01,
S04_PM01, S05_PM01, S05_PM02, S09_PM01), nordicICE
(S03_PM02), and the “model-free option” in Philips ISP
(S12_PM01). For phase III (Figure 1C), 9 out of the 24 sites show a
tight 95% LOA and relatively no bias when compared to the SP
reference (S01_IP01_PM01, S01_IP01_PM02, S03_IP02_PM02,
S04_IP01_PM01, S04_IP03_PM01, S05_IP01_PM01, S05_IP01_
PM02, S05_IP02_PM01, S05_IP02_PM02) for the Ktrans � 0 case.
These 4 sites implemented nordicICE, IB Neuro, and an in-house
postprocessing script.

Figure 2 illustrates the CV as a function of rCBV across
DROs for all voxels. The covariance across DROs (nPhase I � 19,
nPhase II � 17 nPhase III � 25) was calculated in the 10 000 tumor
voxels and plotted against the mean rCBV of each voxel across
DROs. The DRO simulated with Ktrans � 0 (gray circles) and Ktrans � 0
(black circles) is plotted along with the mean CV (horizontal line
plots) across all voxels. This figure does not assume a reference
for calculations. In general, the CV increases for each phase
when more freedom is allowed in the rCBV calculations for both
IP and PM. For phase I (Figure 2A), the average CV is 4% and it
remains fairly flat over the rCBV distribution for Ktrans � 0.
However, when Ktrans � 0, the average CV rose to 17% and
exponentially decreased from roughly 60% to 10% as rCBV
increased. For phases II and III (Figure 2, B and C, respectively),
the CV is observed to exponentially decrease for both Ktrans

cases. For phase II, the average CV is 18% and 30% for Ktrans �
0 and � 0, respectively. As rCBV increases, the CV exponentially

Table 3. Intraclass Correlation Coefficient Results for Each Phase of the Study for Computed rCBV from the
Simulated Intact-BBB and Disrupted-BBB DRO

Site-Specific IP
w/Constant PM

Constant IP
w/Site-Specific PM

Site-Specific IP
w/Site-Specific PM

Intact-BBB 0.970 0.690 0.641

Disrupted-BBB 0.879 0.439 0.380

Figure 1. Bland–Altman limits of agreement (LOA) against the standard imaging protocol (SIP) plotted for site-specific IP
w/constant postprocessing method (PM) (A), constant IP w/site-specific PM (B), and site-specific IP w/site-specific PM
(C). The vertical dashed line is the mean rCBV across 10 000 voxels for the SIP.
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decreases from roughly 80% to 20% for both Ktrans cases. For
phase III, the average CV is 21% and 39% for Ktrans � 0 and �
0, respectively. As rCBV increases, the CV exponentially de-
creases from roughly 120% to 35% for both Ktrans cases.

Figure 3 examines the agreement between the intact-BBB
(Ktrans � 0) and disrupted-BBB (Ktrans � 0) DRO for each pro-
cessed rCBV map. The LCC for each analysis combination was
sorted from the highest (perfect agreement � 1) to the lowest (no
agreement � 0) for each of the 3 phases. A high agreement
indicates that the processed CBV from the simulated disrupted-
BBB DRO had high accuracy when compared to the simulated
intact DRO where no leakage occurs. Site-specific IP with con-
stant PM is shown by the black bars in the bar graph. Note that

the third black bar is the SIP and has a high LCC value, which is
consistent with previous results (15) and therefore used as ref-
erence in Figure 1. Here we observed that most of the sites’ IPs
are able to accurately compute CBV—most likely because these
sites already use IPs similar to the SIP. Three site protocols had
an LCCC � 0.8, indicating low rCBV accuracy when leakage
effects are introduced: S02_IP01, S10_IP01, and S12_IP01.
These protocols also resulted in large LOA and a negative bias as
seen in Figure 1. These results indicate that the IP is highly
sensitive to contrast agent leakage effects even when a leakage
correction PM algorithm is applied. Constant IP with site-spe-
cific PM results are indicated in the dark gray bars in the bar
graph. Here we observe 10 software programs that clearly show

Figure 2. The covariance (CV%) across all relative cerebral blood volume (rCBV) maps for each of the 10 000 voxels plot-
ted across the mean rCBV of the voxels for site-specific IP w/constant PM (A), constant IP w/site-specific PM (B), and site-spe-
cific IP w/site-specific PM (C). Results from the Ktrans � 0 (light gray) and Ktrans � 0 (black) are included with their mean CV%
across all 10 000 voxels indicated for the horizontal lines. For all 3 phases of this study, the largest variation in rCBV occurs
at the low rCBV range for Ktrans � 0, and CV% increases when more freedom was introduced in the choice of IPs and PMs.

Figure 3. A bar plot of Lin’s correlation coefficient (LCC) for each rCBV map for site-specific IP w/constant PM (black),
constant IP w/site-specific PM (medium gray), and site-specific IP w/site-specific PM (light gray). Each phase is sorted by
the resulting LCC from the highest to the lowest value. A horizontal bar at LCC � 0.8 is placed to evaluate agreement
good agreement (LCC � 0.8).
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high agreement: in-house scripts (n � 4), IB Neuro (n � 4),
nordicICE (n � 1), and “model-free” option in the Philips ISP.
Lastly, site-specific IP with site-specific PM resulted in 50% of
the rCBV maps with LCC � 0.8, most likely owing to a combi-
nation of variations in IPs and postprocessing as deduced from
the earlier 2 phases.

DISCUSSION AND CONCLUSION
Reproducibility in DSC-MRI rCBV is crucial for the success of
multisite clinical trials. In this study, we have evaluated rCBV
consistency owing to differences in both IPs and PMs across 12
QIN sites using a DRO. The results outlined in this manuscript
show that standardization of both is warranted.

Our prior DRO investigation highlighted the significant in-
fluence of IPs (including preload dosing and pulse sequence
parameters) on CBV accuracy (15). The findings of this study
strongly indicate that differences in the PM can also confound
multisite CBV consistency and accuracy. High agreement when
site-specific IP were processed by the managing center most
likely reflects the similarity of the IP parameters across all the
sites owing to previous initiatives from the ASFNR that aimed to
standardize IPs (13). However, it was observed that when no
preload was used in the IP (S02_IP01 and S10_IP01), a system-
atic negative bias relative to the SIP occurs. Furthermore, a
slight negative bias is observed for the sites that administered
less than a full standard dose as the main injection (S07_IP01,
S08_IP01, S09_IP01, S12_IP01). These 2 findings underscore
potential challenges to comparing CBV changes in a clinical
trial from sites that use dissimilar preload and bolus dosing
protocols. Three sites (S01, S04, S05) provided clinical IPs for 1.5
T. Sites 01 and 05 used the same IP at both field strengths, and
it was observed that the LOA did widen when compared to the
3.0 T protocol. Site 04 used a smaller flip angle at 1.5 T than at
3 T; however, a widening of LOA was still observed. Differences
here may warrant further investigation into a standardized 1.5 T
IP; however, for the scope of this paper, high agreement was
observed when both field strengths were compared together.

When each site was asked to postprocess the SIP, agreement
decreased substantially as indicated by the ICC and the 95%
LOAs. Interestingly, the disagreement across sites is not isolated
to differences in the leakage correction method, as poor agree-
ment is also observed with the Ktrans � 0 case. For the Ktrans �
0 case, 1 potential source of disagreement in rCBV arises from
whether smoothing is implemented in the software and the CBV
definition. Methods 01 and 02 from S12 deviated from the
traditional CBV definition, as these methods calculated CBV
from the signal intensity curves, potentially losing the biophys-
ics and kinetic properties. For the Ktrans � 0 case, potential
sources of disagreement in rCBV may be attributed to smoothing
and the algorithms and/or implementation of algorithms used
for leakage correction.

It is challenging to compare the results from this current
study directly to prior ones since we performed a voxel-wise
analysis across the DRO, whereas most other studies, like the
recent DSC-MRI challenge (18), report comparisons between
mean region of interest tumor values across data that likely
exhibits patient-specific rCBV distributions. As seen in Figure 2,
there is greater variation across platforms at low rCBV values.

These differences most likely average out when hotspot types of
analyses are performed. Although most likely sufficient for
diagnosis of tumor grade, this might not be ideal for longitudi-
nal assessment of treatment response where voxel-wise analysis
and/or CBV difference quantification has shown to be more
beneficial (11, 12). Despite this, our results indicating incon-
sistent CBV values as more freedom is allowed to the IP and
processing methods is not surprising. Kelm et al. compared
rCBV measurements using 3 software platforms (IB Neuro,
FuncTool, and nordicICE) and also found significant varia-
tion in rCBV (19).

A limitation to our study is that the ROIs for brain tumor
and NAWM have been clearly outlined and predetermined for
analysis. In the context of patient data, allowing users to define
ROIs would likely contribute to greater rCBV inconsistency.
Schmainda et al. showed high mean CBV agreement when ROIs
were predetermined (18). In addition, sites were not required to
determine an AIF for the CBV calculations within this manu-
script.

Results from this study and our prior DRO analysis, which
focused on IP optimization (15), highlight the IPs and PMs that
maximize rCBV accuracy and multisite consistency. First, IPs
that yield the highest rCBV accuracy and multisite concordance
utilize a full-dose contrast agent preload and a full-dose bolus
injection, low (30°) or moderate (65°) flip angle, �30 millisecond
TE, and a �1.5 millisecond TR. In both studies, the use of lower
bolus dose injections (eg, 1/2 dose) were found to substantially
reduce both consistency and accuracy, likely owing to the lower
CNR. Second, the 2 studies further show that, even with opti-
mized IPs, leakage correction should be applied to DSC-MRI
data in brain tumors. Further, the correction algorithms should
be based on the underlying biophysics and kinetics, such as the
BSW correction, as they maximize both accuracy and precision.
Generic leakage correction algorithms (like gamma variate fit-
ting) that arbitrarily modify the shape of DSC-MRI data to
remove T1 and/or T2* leakage effects are not recommended. It
should be noted that in the IP optimization study (15), a low flip
angle approach (30° with a 30 millisecond TE) with a full-dose
bolus injection, no preload, and application of BSW leakage
correction provided accuracy slightly less than that using the
ideal protocol. Studies are currently underway to validate the
clinical potential of this protocol as it could be a compelling
single-dose option for routine surveillance scans and in clinical
trials.

Although great efforts have been made to standardize DSC-
MRI imaging acquisition protocols, this study highlights that
poor CBV agreement can arise when there are variations in
processing platforms. Highest agreement is observed when site-
specific CBV maps are processed by 1 managing center, as might
be expected in a clinical trial setting where acquisition and PMs
are predetermined, and/or raw data are sent to a single site for
analysis. However, differences in CBV, especially at low values,
as would be expected with effective therapy, arise when differ-
ent platforms are used. This finding has important implications
for comparing CBV values across trials, where variability in
trial-specific PMs could confound the comparison of therapeutic
effectiveness and/or any attempts to establish thresholds for
categorical response (eg, predetermined percent changes in
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rCBV values that could be used to refine RANO criteria). To
overcome these challenges and to ensure the successful use of
rCBV as a clinical trial biomarker, it is critical that the DSC-MRI
community establish qualifying and validating criteria, similar

to that in the RSNA DCE-MRI Profile (20), for scanners and
acquisition methods to be used in clinical trials (eg, using a
validated phantom) and the software used for DSC-MRI analysis
(eg, using a DRO where the ground truth is known).
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