42 research outputs found

    Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties

    Get PDF
    We consider the generic problem of performing a global fit to many independent data sets each with a different overall multiplicative normalization uncertainty. We show that the methods in common use to treat multiplicative uncertainties lead to systematic biases. We develop a method which is unbiased, based on a self--consistent iterative procedure. We demonstrate the use of this method by applying it to the determination of parton distribution functions with the NNPDF methodology, which uses a Monte Carlo method for uncertainty estimation.Comment: 33 pages, 5 figures: published versio

    Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontin

    Get PDF
    INTRODUCTION: In order to study metastatic disease, we employed the use of two related polyomavirus middle T transgenic mouse tumor transplant models of mammary carcinoma (termed Met and Db) that display significant differences in metastatic potential. METHODS: Through suppression subtractive hybridization coupled to the microarray, we found osteopontin (OPN) to be a highly expressed gene in the tumors of the metastatic mouse model, and a lowly expressed gene in the tumors of the lowly metastatic mouse model. We further analyzed the role of OPN in this model by examining sense and antisense constructs using in vitro and in vivo methods. RESULTS: With in vivo metastasis assays, the antisense Met cells showed no metastatic tumor formation to the lungs of recipient mice, while wild-type Met cells, with higher levels of OPN, showed significant amounts of metastasis. The Db cells showed a significantly reduced metastasis rate in the in vivo metastasis assay as compared with the Met cells. Db cells with enforced overexpression of OPN showed elevated levels of OPN but did not demonstrate an increase in the rate of metastasis compared with the wild-type Db cells. CONCLUSIONS: We conclude that OPN is an essential regulator of the metastatic phenotype seen in polyomavirus middle T-induced mammary tumors. Yet OPN expression alone is not sufficient to cause metastasis. These data suggest a link between metastasis and phosphatidylinositol-3-kinase-mediated transcriptional upregulation of OPN, but additional phosphatidylinositol-3-kinase-regulated genes may be essential in precipitating the metastasis phenotype in the polyomavirus middle T model

    Mitochondrial targeted catalase suppresses invasive breast cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential.</p> <p>Methods</p> <p>Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined.</p> <p>Results</p> <p>PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm<sup>2</sup>/cm<sup>2 </sup>of lung tissue compared with 1.3 mm<sup>2</sup>/cm<sup>2 </sup>of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling is dependent on p38MAPK for at least some of its downstream effects.</p> <p>Conclusion</p> <p>Targeting catalase within mitochondria of tumor cells and tumor stromal cells suppresses ROS-driven tumor progression and metastasis. Therefore, increasing the antioxidant capacity of the mitochondrial compartment could be a rational therapeutic approach for invasive breast cancer.</p> <p>Please see related commentary article: <url>http://www.biomedcentral.com/1741-7015/9/62</url></p

    Immunohistochemical Characterisation of Cell-Type Specific Expression of CK1δ in Various Tissues of Young Adult BALB/c Mice

    Get PDF
    BACKGROUND: Casein kinase 1 delta (CK1delta) phosphorylates many key proteins playing important roles in such biological processes as cell growth, differentiation, apoptosis, circadian rhythm and vesicle transport. Furthermore, deregulation of CK1delta has been linked to neurodegenerative diseases and cancer. In this study, the cell specific distribution of CK1delta in various tissues and organs of young adult BALB/c mice was analysed by immunohistochemistry. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical staining of CK1delta was performed using three different antibodies against CK1delta. A high expression of CK1delta was found in a variety of tissues and organ systems and in several cell types of endodermal, mesodermal and ectodermal origin. CONCLUSIONS: These results give an overview of the cell-type specific expression of CK1delta in different organs under normal conditions. Thus, they provide evidence for possible cell-type specific functions of CK1delta, where CK1delta can interact with and modulate the activity of key regulator proteins by site directed phosphorylation. Furthermore, they provide the basis for future analyses of CK1delta in these tissues
    corecore