26,813 research outputs found

    Revisiting the Use of Customer Information for CRM

    Get PDF
    For the past decade, customer relationship management (CRM) has been one of the priorities in marketing research and practice. However, many of the CRM systems did not perform as the companies expected. As such shortcoming could be due to inappropriate data input, this study provides a comprehensive overview of the empirical CRM literature. Along the phases of the CRM process, the authors show which kind of data has successfully proven to achieve the CRM objectives. The study provides researchers with a review of the empirical research on CRM and allows practitioners insights on the usability of customer data for CRM. --Customer Relationship Management (CRM),Customer Data

    Grundrechtsberechtigung juristischer Personen (Art. 19 Abs. 3 GG)

    No full text

    Baryon production in ALEPH

    Get PDF
    Several recent results of the ALEPH Collaboration covering different aspects of baryon production on the Z resonance are presented. In particular production rates of hyperons, the full kinematical reconstruction of the Lambda_b, observation of Xi_b in its semileptonic decay, and the measurements of the polarization of Lambda and Lambda_b baryons are discussed

    Strong interference effects in the resonant Auger decay of atoms induced by intense X-Ray fields

    Full text link
    The theory of resonant Auger decay of atoms in a high intensity coherent X-ray pulse is presented. The theory includes the coupling between the ground state and the resonance due to an intense X-ray pulse, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the final ionic states coherently. The theory also considers the impact of the direct photoionization of the resonance state itself which typically populates highly-excited ionic states. The combined action of the resonant decay and of the direct ionization of the ground state in the field induces a non-hermitian time-dependent coupling between the ground and the 'dressed' resonance stats. The impact of these competing processes on the total electron yield and on the 2s2^22p4(1D)^{4}(^1\mathrm{D})3p 2^2P spectator and 2s1^12p6^{6} 2^2S participator Auger decay spectra of the Ne 1s\to3p resonance is investigated. The role of the direct photoionization of the ground state and of the resonance increases dramatically with the field intensity. This results in strong interference effects with distinct patterns in the electron spectra, different for the participator and spectator final states.Comment: 31 pages, 6 figure

    FGB1 and WSC3 are in planta-induced beta-glucan-binding fungal lectins with different functions

    Get PDF
    In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in beta-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain beta 1-3-glucan but has no affinity for shorter beta 1-3- or beta 1-6-linked glucose oligomers. Comparative analysis with the previously identified beta-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require beta 1-6-linked glucose for efficient binding to branched beta 1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two beta-glucan-binding lectins. Our results highlight the importance of the beta-glucan cell wall component in plant-fungus interactions and the potential of beta-glucan-binding lectins as specific detection tools for fungi in vivo

    Comparison of the INRIM and PTB lattice-spacing standards

    Full text link
    To base the kilogram definition on the atomic mass of the silicon 28 atom, the present relative uncertainty of the silicon 28 lattice parameter must lowered to 3E-9. To achieve this goal, a new experimental apparatus capable of a centimetre measurement-baseline has been made at the INRIM. The comparison between the determinations of the lattice parameter of crystals MO*4 of INRIM and WASO4.2a of PTB is intended to verify the measurement capabilities and to assess the limits of this experiment.Comment: 10 pages, 8 figures, submitted to Metrologi

    Metal-Insulator Transition in a Generalized Hubbard Model with Correlated Hopping at Half-Filling

    Get PDF
    In the present paper metal-insulator transition is studied in a generalized Hubbard model with correlated hopping at half-filling and zero temperature. Single-particle Green function and energy spectrum of electron system are calculated. The expressions for energy gap width and the concentration of polar states (holes or doublons) are obtained. The conditions for metallic and insulating states are found.Comment: 11 pages, 2 eps figures, Latex 2.09, submitted to Phys. Stat. Sol. (B

    Revisiting the Use of Customer Information for CRM

    Full text link
    For the past decade, customer relationship management (CRM) has been one of the priorities in marketing research and practice. However, many of the CRM systems did not perform as the companies expected. As such shortcoming could be due to inappropriate data input, this study provides a comprehensive overview of the empirical CRM literature. Along the phases of the CRM process, the authors show which kind of data has successfully proven to achieve the CRM objectives. The study provides researchers with a review of the empirical research on CRM and allows practitioners insights on the usability of customer data for CRM

    Ionization heating in rare-gas clusters under intense XUV laser pulses

    Full text link
    The interaction of intense extreme ultraviolet (XUV) laser pulses (λ=32nm\lambda=32\rm\,nm, I=101114I=10^{11-14}\,W/cm2^2) with small rare-gas clusters (Ar147_{147}) is studied by quasi-classical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in [Bostedt {\it et al.}, Phys. Rev. Lett. {\bf 100}, 013401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via {\it ionization heating}, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.Comment: figure problems resolve

    Release of noble gases and nitrogen from grain-surface sites in lunar ilmenite by closed-system oxidation

    Get PDF
    Noble gases and nitrogen were extracted from a 100 to 150 microns ilmenite separate from lunar soil 71501 by closed system stepped heating in approx. 10 torr O2 at 300 C, 400 C, 500 C, 600 C and 630 C, followed by stepped pyrolysis at ten temperatures between 680 C and approx. 1500 C. The five oxidation steps together liberated approx. 65% of the total He-4, 45% of the Ne-20, 23% of the N-14 and Ar-36, 12% of the Kr-84 and 8% of the Xe-132 in the sample; Ne-20/Ar-36 and Ne-20/Ne-22 ratios agree with the solar wind composition experiment, and Kr-84/Ar-36 and Xe-132/Ar-36 are within approx. 10% of Cameron's estimates for the sun and solar wind. The remaining gases, released above 630 C by pyrolysis, are strongly fractionated with respect to the SWC-Cameron solar wind elemental composition. Large concentrations of fractionated noble gases in grain interiors, their virtual absence in the relatively unfractionated surface gas reservoir, and the high N/noble gas ratio all imply that most of the solar wind noble gases initially implanted in grain surfaces are eventually lost by diffusion. Loss limits can be estimated by considering two given scenarios. It is concluded tat approx. 70 to 97% or more of the Ar implanted in 71501 ilmenite grains has diffusively escaped
    corecore