3,582 research outputs found
An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1
The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover
Design concepts for bioreactors in space
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats
Design concepts for bioreactors in space
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources, especially in the context of closed ecological life support systems (CELSS) in space habitats. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecraft, space stations and other extra-terrestrial habitats
QCD as a Quantum Link Model
QCD is constructed as a lattice gauge theory in which the elements of the
link matrices are represented by non-commuting operators acting in a Hilbert
space. The resulting quantum link model for QCD is formulated with a fifth
Euclidean dimension, whose extent resembles the inverse gauge coupling of the
resulting four-dimensional theory after dimensional reduction. The inclusion of
quarks is natural in Shamir's variant of Kaplan's fermion method, which does
not require fine-tuning to approach the chiral limit. A rishon representation
in terms of fermionic constituents of the gluons is derived and the quantum
link Hamiltonian for QCD with a U(N) gauge symmetry is expressed in terms of
glueball, meson and constituent quark operators. The new formulation of QCD is
promising both from an analytic and from a computational point of view.Comment: 27 pages, including three figures. ordinary LaTeX; Submitted to Nucl.
Phys.
Direct effects of warming increase woody plant abundance in a subarctic wetland
Both the direct effects of warming on a species’ vital rates and indirect effects of warming caused by interactions with neighboring species can influence plant populations. Furthermore, herbivory mediates the effects of warming on plant community composition in many systems. Thus, determining the importance of direct and indirect effects of warming, while considering the role of herbivory, can help predict long-term plant community dynamics. We conducted a field experiment in the coastal wetlands of western Alaska to investigate how warming and herbivory influence the interactions and abundances of two common plant species, a sedge, Carex ramenskii, and a dwarf shrub, Salix ovalifolia. We used results from the experiment to model the equilibrium abundances of the species under different warming and grazing scenarios and to determine the contribution of direct and indirect effects to predict population changes. Consistent with the current composition of the landscape, model predictions suggest that Carex is more abundant than Salix under ambient temperatures with grazing (53% and 27% cover, respectively). However, with warming and grazing, Salix becomes more abundant than Carex (57% and 41% cover, respectively), reflecting both a negative response of Carexand a positive response of Salix to warming. While grazing reduced the cover of both species, herbivory did not prevent a shift in dominance from sedges to the dwarf shrub. Direct effects of climate change explained about 97% of the total predicted change in species cover, whereas indirect effects explained only 3% of the predicted change. Thus, indirect effects, mediated by interactions between Carex and Salix, were negligible, likely due to use of different niches and weak interspecific interactions. Results suggest that a 2°C increase could cause a shift in dominance from sedges to woody plants on the coast of western Alaska over decadal timescales, and this shift was largely a result of the direct effects of warming. Models predict this shift with or without goose herbivory. Our results are consistent with other studies showing an increase in woody plant abundance in the Arctic and suggest that shifts in plant–plant interactions are not driving this change
Frogs (Coqui Frogs, Greenhouse Frogs, Cuban Tree Frogs, and Cane Toads)
Amphibians are perhaps most well known for their highly threatened status, which often masks appreciation for the great numbers of species that are widespread global invaders (Kraus 2009). Both purposeful and accidental introductions of amphibians have occurred worldwide. Motivations for purposeful amphibian introductions include their use as biocontrol agents and culinary ambitions (Storer 1925; Kraus 2009). However, there are an increasing number of amphibians that are being accidentally introduced and becoming widespread (Kraus 2009). These introductions are in some ways more disconcerting because they may be the most difficult to prevent in the future.
There are 19 nonnative amphibians that have become successfully established in 28 of the 50 U.S. states (Figure 9.1; Kraus 2009). The most successful non-native amphibian is the bullfrog (Lithobates catesbeianus), which has become established in 19 states outside of its native range on the eastern side of the United States, followed by the Cuban greenhouse frog (Eleutherodactylus planirostris), which has established itself in six states, and five frog species, including the Puerto Rican coqui (E. coqui), which are now established in three states outside of their native range (Figure 9.1; Kraus 2009). The state with the most nonnative frogs is California with eight species, followed by Hawaii with six, and Florida and Arizona with four (Table 9.1; Kraus 2009). Many nonnative amphibians in the United States, particularly in the western United States, are from other parts of the United States, namely, east of the Mississippi River. However, there are also many nonnative amphibians with tropical or subtropical origins that are primarily successful in tropical and subtropical states, such as Florida and Hawaii, and territories, such as Guam
Breeding Guilds Determine Frog Response to Edge Effects in Brazil’s Atlantic Forest
Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil’s Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH \u3e 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in response to edge effect and matrix types, and can guide more effective management and conservation actions
The Two-Dimensional S=1 Quantum Heisenberg Antiferromagnet at Finite Temperatures
The temperature dependence of the correlation length, susceptibilities and
the magnetic structure factor of the two-dimensional spin-1 square lattice
quantum Heisenberg antiferromagnet are computed by the quantum Monte Carlo loop
algorithm (QMC). In the experimentally relevant temperature regime the
theoretically predicted asymptotic low temperature behavior is found to be not
valid. The QMC results however, agree reasonably well with the experimental
measurements of La2NiO4 even without considering anisotropies in the exchange
interactions.Comment: 4 Pages, 1 table, 4 figure
Griffiths-McCoy singularities in the transverse field Ising model on the randomly diluted square lattice
The site-diluted transverse field Ising model in two dimensions is studied
with Quantum-Monte-Carlo simulations. Its phase diagram is determined in the
transverse field (Gamma) and temperature (T) plane for various (fixed)
concentrations (p). The nature of the quantum Griffiths phase at zero
temperature is investigated by calculating the distribution of the local
zero-frequency susceptibility. It is pointed out that the nature of the
Griffiths phase is different for small and large Gamma.Comment: 21 LaTeX (JPSJ macros included), 12 eps-figures include
Kosterlitz-Thouless Universality in a Fermionic System
A new extension of the attractive Hubbard model is constructed to study the
critical behavior near a finite temperature superconducting phase transition in
two dimensions using the recently developed meron-cluster algorithm. Unlike
previous calculations in the attractive Hubbard model which were limited to
small lattices, the new algorithm is used to study the critical behavior on
lattices as large as . These precise results for the first time
show that a fermionic system can undergo a finite temperature phase transition
whose critical behavior is well described by the predictions of Kosterlitz and
Thouless almost three decades ago. In particular it is confirmed that the
spatial winding number susceptibility obeys the well known predictions of
finite size scaling for and up to logarithmic corrections the pair
susceptibility scales as at large volumes with for .Comment: Revtex format; 4 pages, 2 figure
- …