178 research outputs found

    Evaluation of harmful algal bloom outreach activities

    Get PDF
    This is the final version of the article. Available from MDPI via the link in this record.With an apparent increase of harmful algal blooms (HABs) worldwide, healthcare providers, public health personnel and coastal managers are struggling to provide scientifically-based appropriately-targeted HAB outreach and education. Since 1998, the Florida Poison Information Center-Miami, with its 24 hour/365 day/year free Aquatic Toxins Hotline (1-888-232-8635) available in several languages, has received over 25,000 HAB-related calls. As part of HAB surveillance, all possible cases of HAB-related illness among callers are reported to the Florida Health Department. This pilot study evaluated an automated call processing menu system that allows callers to access bilingual HAB information, and to speak directly with a trained Poison Information Specialist. The majority (68%) of callers reported satisfaction with the information, and many provided specific suggestions for improvement. This pilot study, the first known evaluation of use and satisfaction with HAB educational outreach materials, demonstrated that the automated system provided useful HAB-related information for the majority of callers, and decreased the routine informational call workload for the Poison Information Specialists, allowing them to focus on callers needing immediate assistance and their healthcare providers. These results will lead to improvement of this valuable HAB outreach, education and surveillance tool. Formal evaluation is recommended for future HAB outreach and educational materials.The funding for this study was provided by the Florida Department of Health and the Centers for Disease Control and Prevention (CDC) and Florida Harmful Algal Bloom Taskforce, as well as the National Science Foundation and National Institute of Environmental Health Sciences Oceans and Human Health Center at the University of Miami Rosenstiel School (NSF 0CE0432368; NIEHS 1 P50 ES12736), the former National Institute of Environmental Health Sciences Marine and Freshwater Biomedical Sciences Center at the University of Miami Rosenstiel School (NIEHS P30ES05705), and the National Institute of Environmental Health Sciences Red Tide POI (P01 ES 10594)

    Using Effect Size in Evaluating Academic Engagement and Motivation in a Private Business School

    Get PDF
    This research analyses student engagement and motivation data gathered from a UK-based private business university and multiple European public universities. The data was obtained using an Internet-based generic expert system called Evolute. In this research, the self-evaluation results from 40 undergraduate business school students were subjected to comparison analysis using an effect size described by Cohen’s d-values. Using the effect size in the analysis helps to easily identify the areas or the specific items where the benchmarked university is doing well compared to others, as well as to find out the areas or items that could be subjected for improvement. According to the results, the benchmarked institution scored higher mean values in 95% of statements than all the other cases conducted with the instrument at public universities

    Use of outpatient care in VA and Medicare among disability-eligible and age-eligible veteran patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than half of veterans who use Veterans Health Administration (VA) care are also eligible for Medicare via disability or age, but no prior studies have examined variation in use of outpatient services by Medicare-eligible veterans across health system, type of care or time.</p> <p>Objectives</p> <p>To examine differences in use of VA and Medicare outpatient services by disability-eligible or age-eligible veterans among veterans who used VA primary care services and were also eligible for Medicare.</p> <p>Methods</p> <p>A retrospective cohort study of 4,704 disability- and 10,816 age-eligible veterans who used VA primary care services in fiscal year (FY) 2000. We tracked their outpatient utilization from FY2001 to FY2004 using VA administrative and Medicare claims data. We examined utilization differences for primary care, specialty care, and mental health outpatient visits using generalized estimating equations.</p> <p>Results</p> <p>Among Medicare-eligible veterans who used VA primary care, disability-eligible veterans had more VA primary care visits (<it>p </it>< 0.001) and more VA specialty care visits (<it>p </it>< 0.001) than age-eligible veterans. They were more likely to have mental health visits in VA (<it>p </it>< 0.01) and Medicare-reimbursed visits (<it>p </it>< 0.01). Disability-eligible veterans also had more total (VA+Medicare) visits for primary care (<it>p </it>< 0.01) and specialty care (<it>p </it>< 0.01), controlling for patient characteristics.</p> <p>Conclusions</p> <p>Greater use of primary care and specialty care visits by disability-eligible veterans is most likely related to greater health needs not captured by the patient characteristics we employed and eligibility for VA care at no cost. Outpatient care patterns of disability-eligible veterans may foreshadow care patterns of veterans returning from Afghanistan and Iraq wars, who are entering the system in growing numbers. This study provides an important baseline for future research assessing utilizations among returning veterans who use both VA and Medicare systems. Establishing effective care coordination protocols between VA and Medicare providers can help ensure efficient use of taxpayer resources and high quality care for disabled veterans.</p

    Hard Superconductivity of a Soft Metal in the Quantum Regime

    Full text link
    Superconductivity is inevitably suppressed in reduced dimensionality. Questions of how thin superconducting wires or films can be before they lose their superconducting properties have important technological ramifications and go to the heart of understanding coherence and robustness of the superconducting state in quantum-confined geometries. Here, we exploit quantum confinement of itinerant electrons in a soft metal to stabilize superconductors with lateral dimensions of the order of a few millimeters and vertical dimensions of only a few atomic layers. These extremely thin superconductors show no indication of defect- or fluctuation-driven suppression of superconductivity and sustain supercurrents of up to 10% of the depairing current density. The extreme hardness of the critical state is attributed to quantum trapping of vortices. This study paints a conceptually appealing, elegant picture of a model nanoscale superconductor with calculable critical state properties. It indicates the intriguing possibility of exploiting robust superconductivity at the nanoscale.Comment: 15 pages, 4 figures, submitted to Nature Physic

    Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    Get PDF
    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold

    Osteo-cise: Strong Bones for Life: protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Get PDF
    Background : Osteoporosis affects over 220 million people worldwide, and currently there is no \u27cure\u27 for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods : The \u27Osteo-cise: Strong Bones for Life\u27 study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function, and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged 60 years or above will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month \u27research to practise\u27 translational phase. Participants will be randomly assigned to either the \u27Osteo-cise\u27 intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test). Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand), falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion : The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture.<br /

    A Threshold Equation for Action Potential Initiation

    Get PDF
    In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. Our equation was validated with simulations of a previously published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends crucially on the shape of the Na activation function near spike initiation (about −55 mV), while its parameters are adjusted near half-activation voltage (about −30 mV), which might explain why many models exhibit little threshold variability, contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold

    Charge Transport in DNA-Based Devices

    Get PDF
    Charge migration along DNA molecules has attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experiments on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles and networks. These measurements are reviewed and presented here. From these experiments we conclude that electrical transport is feasible in short DNA molecules, in bundles and networks, but blocked in long single molecules that are attached to surfaces. The experimental background is complemented by an account of the theoretical/computational schemes that are applied to study the electronic and transport properties of DNA-based nanowires. Examples of selected applications are given, to show the capabilities and limits of current theoretical approaches to accurately describe the wires, interpret the transport measurements, and predict suitable strategies to enhance the conductivity of DNA nanostructures.Comment: A single pdf file of 52 pages, containing the text and 23 figures. Review about direct measurements of DNA conductivity and related theoretical studies. For higher-resolution figures contact the authors or retrieve the original publications cited in the caption
    corecore