1,290 research outputs found

    Electron microprobe monazite geochronology : a tool for evaluating magmatic ages with examples from Variscan Massif Central migmatites and granotoids, France.

    No full text
    U–Th–Pb dating of monazite with the electron probe microanalyser (EPMA) is increasingly documented as a reliable geochronological method offering high spatial resolution. This method has been applied on monazite from the Cévennes migmatites and granitoids from the southeast of the French Massif Central. Measurements were performed on separated grains after systematic back-scattered electron (BSE) imaging. Monazites from migmatites record two main ages: (i) a protolith age of about 550–543 Ma obtained on inherited cores, and (ii) a migmatization event between 329 ± 5 and 323 ± 3 Ma recorded by monazite rims and all other monogenetic grains. Monazite from the peraluminous Rocles pluton yields a 318 ± 3 Ma age. Finally, three granite dykes are dated at 333 ± 6, 318 ± 5 and 311 ± 5 Ma; the older dyke is the most deformed of them and is interpreted as linked to the migmatization event; the two other dykes are geochronologically, petrologically and structurally coeval with the Rocles pluton. The data constrain the timing of crustal melting following Variscan thickening in the northern Cévennes area. Migmatization of Ordovician protoliths took place at 329–323 Ma and was shortly followed by intrusion of leucogranite at 318–311 Ma. The study shows that EPMA dating of monazite can be successfully used to resolve a close succession of regional melting events

    Middle Carboniferous crustal melting in the Variscan Belt: New insights from U-Th-Pbtot. monazite and U-Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central)

    Get PDF
    International audienceIn France, the Devonian-Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean-Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U-Th-Pbtot. ages on monazite and three U-Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333-326Ma (Visean) and late granitoids emplaced around 325-318Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560Ma and 480Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the "Tufs anthracifères" volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale

    The South Millevaches Middle Carboniferous crustal melting and its place in the French Variscan Belt

    Get PDF
    International audienceSeveral episodes of crustal melting are now well identified in the Variscan French Massif Central. Middle Devonian (ca 385-375 Ma) migmatites are recognized in the Upper and Lower Gneiss Units involved in the stack of nappes. Late Carboniferous migmatites (ca 300 Ma) are exposed in the Velay Massif only wilst and Middle Carboniferous migmatites crop out in the Para-Autochthonous Unit and Southern Fold-and-Thrust Belt. In the SW part of the Massif Central, the South Millevaches massif exposes migmatites developed at the expense of ortho- and paragneiss. Theform kilometer-sized septa within the foliated Goulles leucogranitic pluton, which is in turn intruded by the non-foliated Glény two micas granite pluton. Monazite grains extracted from these three rock-types have been dated by the EPMA chemical method. Three samples of migmatite yield a late Visean age (ca 337-328 Ma), the Goulles and Glény granitic plutons yield ages at 324-323 Ma and 324-318 Ma, respectively. These new results enlarge the evidence of a Middle Carboniferous crustal melting imprint that, up to now was only reported in the eastern part of the French Massif Central, in the northern Cévennes and in the Montagne Noire axial zone. At the scale of the French Variscan massifs, the Visean crustal melting event is conspicuously developed since it is recognized from the Massif Armoricain (Vendée and south coast of Brittany) to the Central Vosges. This episode is synchronous with the huge thermal event responsible for the “Tuffs anthracifères” magmatism of the northern Massif Central and Vosges, and took place immediately after the last thickening phase recorded both in Montagne Noire and Ardennes, this is on the southern and northern outer zones of the Variscan Belt, respectively. However, the geodynamic significance of this major event is not fully understood yet

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage

    Emplacement of inflated Pāhoehoe flows in the Naude’s Nek Pass, Lesotho remnant, Karoo continental flood basalt province: use of flow-lobe tumuli in understanding flood basalt emplacement

    Get PDF
    Physical volcanological features are presented for a 710-m-thick section, of the Naude’s Nek Pass, within the lower part of the Lesotho remnant of the Karoo Large Igneous Province. The section consists of inflated pāhoehoe lava with thin, impersistent sedimentary interbeds towards the base. There are seven discreet packages of compound and hummocky pāhoehoe lobes containing flow-lobe tumuli, making up approximately 50% of the section. Approximately 45% of the sequence consists of 14 sheet lobes, between 10 and 52-m-thick. The majority of the sheet lobes are in two packages indicating prolonged periods of lava supply capable of producing thick sheet lobes. The other sheet lobes are as individual lobes or pairs, within compound flows, suggesting brief increases in lava supply rate. We suggest, contrary to current belief, that there is no evidence that compound flows are proximal to source and sheet lobes (simple flows) are distal to source and we propose that the presence of flow-lobe tumuli in compound flows could be an indicator that a flow is distal to source. We use detailed, previously published, studies of the Thakurvadi Formation (Deccan Traps) as an example. We show that the length of a lobe and therefore the sections that are ‘medial or distal to source’ are specific to each individual lobe and are dependent on the lava supply of each eruptive event, and as such flow lobe tumuli can be used as an indicator of relative distance from source

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12

    Full text link
    Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using 2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12 targets in the CLAS detector. A_LT' is related to the imaginary part of the longitudinal-transverse interference and in quasifree nucleon knockout it provides an unambiguous signature for final state interactions (FSI). Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3% for data with good statistical precision. Optical Model in Eikonal Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure
    corecore