5 research outputs found

    Diagnostic and prognostic value of noninvasive long-term video-electroencephalographic monitoring in epilepsy surgery: A systematic review and meta-analysis from the E-PILEPSY consortium

    Get PDF
    OBJECTIVE: The European Union–funded E‐PILEPSY network (now continuing within the European Reference Network for rare and complex epilepsies [EpiCARE]) aims to harmonize and optimize presurgical diagnostic procedures by creating and implementing evidence‐based guidelines across Europe. The present study evaluates the current evidence on the diagnostic accuracy of long‐term video‐electroencephalographic monitoring (LTM) in identifying the epileptogenic zone in epilepsy surgery candidates. METHODS: MEDLINE, Embase, CENTRAL, and ClinicalTrials.gov were searched for relevant articles. First, we used random‐effects meta‐analytical models to calculate pooled estimates of sensitivity and specificity with respect to postsurgical seizure freedom. In a second phase, we analyzed individual patient data in an exploratory fashion, assessing diagnostic accuracy within lesional and nonlesional temporal lobe epilepsy (TLE) and extratemporal lobe epilepsy (ETLE) patients. We also evaluated seizure freedom rate in the presence of “localizing” or “nonlocalizing” LTM within each group. The quality of evidence was assessed using the QUADAS‐2 tool and the GRADE approach. RESULTS: Ninety‐four studies were eligible. Forty‐four were included in sensitivity meta‐analysis and 34 in specificity meta‐analysis. Pooled sensitivity was 0.70 (95% confidence interval [CI] = 0.60‐0.80) and specificity was 0.40 (95% CI = 0.27‐0.54). Subgroup analysis was based on individual data of 534 patients (41% men). In lesional TLE patients, sensitivity was 0.85 (95% CI = 0.81‐0.89) and specificity was −0.19 (95% CI = 0.13‐0.28). In lesional ETLE patients, a sensitivity of 0.47 (95% CI = 0.36‐0.58) and specificity of 0.35 (95% CI = 0.21‐0.53) were observed. In lesional TLE, if LTM was localizing and concordant with resection site, the seizure freedom rate was 247 of 333 (74%), whereas in lesional ETLE it was 34 of 56 (61%). The quality of evidence was assigned as “very low.” SIGNIFICANCE: Long‐term video‐electroencephalographic monitoring is associated with moderate sensitivity and low specificity in identification of the epileptogenic zone. Sensitivity is remarkably higher in lesional TLE compared to lesional ETLE. Substantial heterogeneity across the studies indicates the need for improved design and quality of reporting

    Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe.

    Get PDF
    OBJECTIVE: In 2014 the European Union-funded E-PILEPSY project was launched to improve awareness of, and accessibility to, epilepsy surgery across Europe. We aimed to investigate the current use of neuroimaging, electromagnetic source localization, and imaging postprocessing procedures in participating centers. METHODS: A survey on the clinical use of imaging, electromagnetic source localization, and postprocessing methods in epilepsy surgery candidates was distributed among the 25 centers of the consortium. A descriptive analysis was performed, and results were compared to existing guidelines and recommendations. RESULTS: Response rate was 96%. Standard epilepsy magnetic resonance imaging (MRI) protocols are acquired at 3 Tesla by 15 centers and at 1.5 Tesla by 9 centers. Three centers perform 3T MRI only if indicated. Twenty-six different MRI sequences were reported. Six centers follow all guideline-recommended MRI sequences with the proposed slice orientation and slice thickness or voxel size. Additional sequences are used by 22 centers. MRI postprocessing methods are used in 16 centers. Interictal positron emission tomography (PET) is available in 22 centers; all using 18F-fluorodeoxyglucose (FDG). Seventeen centers perform PET postprocessing. Single-photon emission computed tomography (SPECT) is used by 19 centers, of which 15 perform postprocessing. Four centers perform neither PET nor SPECT in children. Seven centers apply magnetoencephalography (MEG) source localization, and nine apply electroencephalography (EEG) source localization. Fourteen combinations of inverse methods and volume conduction models are used. SIGNIFICANCE: We report a large variation in the presurgical diagnostic workup among epilepsy surgery centers across Europe. This diversity underscores the need for high-quality systematic reviews, evidence-based recommendations, and harmonization of available diagnostic presurgical methods
    corecore