35 research outputs found

    Exceptionally Preserved Cambrian Trilobite Digestive System Revealed in 3D by Synchrotron-Radiation X-Ray Tomographic Microscopy

    Get PDF
    The Cambrian ‘Orsten’ fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish ‘Orsten’ fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the ‘Orsten’ fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Pharmacokinetics and normal scintigraphic appearance of 99mTc aprotinin

    No full text
    Objective To confirm the pharmacokinetics and biodistribution of Tc-99m aprotinin in normal volunteers and to determine the optimum time for scanning post-injection, prior to further investigations of Tc-99m aprotinin as an imaging agent for amyloidosis

    Efficacy of adjunctive Garcinia mangostana Linn (mangosteen) pericarp for bipolar depression: study protocol for a proof-of-concept trial

    Get PDF
    OBJECTIVE: Bipolar depression is characterized by neurobiological features including perturbed oxidative biology, reduction in antioxidant levels, and a concomitant rise in oxidative stress markers. Bipolar depression manifests systemic inflammation, mitochondrial dysfunction, and changes in brain growth factors. The depressive phase of the disorder is the most common and responds the least to conventional treatments. Garcinia mangostana Linn, commonly known as mangosteen, is a tropical fruit. The pericarp's properties may reduce oxidative stress and inflammation and improve neurogenesis, making mangosteen pericarp a promising add-on therapy for bipolar depression. METHODS: Participants will receive 24 weeks of either 1,000 mg mangosteen pericarp or placebo per day, in addition to their usual treatment. The primary outcome is change in severity of mood symptoms, measured using the Montgomery-Ã…sberg Depression Rating Scale (MADRS), over the treatment phase. Secondary outcomes include global psychopathology, quality of life, functioning, substance use, cognition, safety, biological data, and cost-effectiveness. A follow-up interview will be conducted 4 weeks post-treatment. CONCLUSION: The findings of this study may have implications for improving treatment outcomes for those with bipolar disorder and may contribute to our understanding of the pathophysiology of bipolar depression. CLINICAL TRIAL REGISTRATION: Australian and New Zealand Clinical Trial Registry, ACTRN12616000028404
    corecore