12 research outputs found

    Book 7 of Ibn al-Nafīs’s commentary on the Hippocratic Aphorisms

    Get PDF
    The interest in plant virus evolution can be dated to the late 1920s, when it was shown that plant virus populations were genetically heterogeneous, and that Ihcir composition changed according to the experimental conditions. Many important ideas were generated prior to the era of molecular virology, such as the role of hostand vector-associated selection in virus evolution, and also that small populations, gene coadaptation and evolutionary trade-offs could limit the efficiency of selection. The analysis of viral genomes in the 1980s and 1990s established the quasispecieslike structure of their populations and allowed extensive analyses of the relationships among vims strains and species. The concept that vims populations had huge sizes and high rates of adaptive mutations became prevalent in this period, with selection mostly invoked as explaining observed patterns of population structure and evolution. In recent times vims evolution has been coming into line with evolutionary biology, and a more complex scenario has emerged. Population bottlenecks during host colonization, during host-to-host transmission or during host population fluctuations may result in smaller population sizes, and genetic drift has been recognized as an important evolutionary factor. Also, particularities of viral genomes such as low levels of neutrality, multifunctionality of coding and encoded sequences or strong epistasis could constrain the plasticity of viral genomes and hinder their response to selection. Exploring the complexities of plant vims evolution will continue to be a challenge for the future, particularly as it affects host, vector and ecosystem dynamics

    Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production

    No full text
    Key message: Transgenic hairy roots of R. stricta were developed for investigation of alkaloid accumulations. The contents of five identified alkaloids, including serpentine as a new compound, increased compared to non-transformed roots .Abstract: Rhazya stricta Decne. is a rich source of pharmacologically active terpenoid indole alkaloids (TIAs). In order to study TIA production and enable metabolic engineering, we established hairy root cultures of R. stricta by co-cultivating cotyledon, hypocotyl, leaf, and shoot explants with wild-type Agrobacterium rhizogenes strain LBA 9402 and A. rhizogenes carrying the pK2WG7-gusA binary vector. Hairy roots initiated from the leaf explants 2 to 8 weeks. Transformation was confirmed by polymerase chain reaction and in case of GUS clones with GUS staining assay. Transformation efficiency was 74 and 83 % for wild-type and GUS hairy root clones, respectively. Alkaloid accumulation was monitored by HPLC, and identification was achieved by UPLC-MS analysis. The influence of light (16 h photoperiod versus total darkness) and media composition (modified Gamborg B5 medium versus Woody Plant Medium) on the production of TIAs were investigated. Compared to non-transformed roots, wild-type hairy roots accumulated significantly higher amounts of five alkaloids. GUS hairy roots contained higher amounts two of alkaloids compared to non-transformed roots. Light conditions had a marked effect on the accumulation of five alkaloids whereas the composition of media only affected the accumulation of two alkaloids. By successfully establishing R. stricta hairy root clones, the potential of transgenic hairy root systems in modulating TIA production was confirmed

    Viren und Phagen

    No full text

    Chromosome Variation in Plant Tissue Culture

    No full text
    corecore