8 research outputs found

    Sculpting oscillators with light within a nonlinear quantum fluid

    Full text link
    Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into such quantum fluids producing rich physical phenomena as well as proven potential for interferometric devices [1-10]. However direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room temperature quantum states [11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualise the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially-separated pump spots. Although oscillating at tuneable THz-scale frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic

    Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature

    Get PDF
    Strong-coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact robust easily-assembled gold nano-gap resonators at room temperature. We prove that strong coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 104^{4}, while retaining quantum efficiencies above 50%, and show evidence for superlinear light emission.We acknowledge support from EPSRC grants EP/G060649/1, EP/L027151/1, EP/G037221/1, EPSRC NanoDTC, and ERC grant LINASS 320503. J.M. acknowledges support from the Winton Programme of the Physics of Sustainability. R.C. acknowledges support from the Dr Manmohan Singh scholarship from St John’s College, University of Cambridge. AIT and EMA acknowledge support from EPSRC grant EP/M012727/1, Graphene Flagship grant 696656, and ITN Spin-NANO 676108. CC acknowledges support from the UK National Physical Laboratory. CG acknowledges support by the A. v. Humboldt Foundation

    Holes avoid decoherence

    No full text

    Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature

    No full text
    Strong-coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact robust easily-assembled gold nano-gap resonators at room temperature. We prove that strong coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 104^{4}, while retaining quantum efficiencies above 50%, and show evidence for superlinear light emission

    Optically controlled locking of the nuclear field via coherent dark-state spectroscopy

    No full text
    A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices 1-6. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction 7-9, while the dynamics of the single spin also influence the nuclear environment 10-15. Recent efforts 12,16 have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent, control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet. to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement, of the single electron spin dephasing time T 2 *, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T 2 * by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques 8,12. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening. ©2009 Macmlllan Publishers Limited. All rights reserved.link_to_subscribed_fulltex
    corecore