38 research outputs found

    A Curated Database of miRNA Mediated Feed-Forward Loops Involving MYC as Master Regulator

    Get PDF
    BACKGROUND: The MYC transcription factors are known to be involved in the biology of many human cancer types. But little is known about the Myc/microRNAs cooperation in the regulation of genes at the transcriptional and post-transcriptional level. METHODOLOGY/PRINCIPAL FINDINGS: Employing independent databases with experimentally validated data, we identified several mixed microRNA/Transcription Factor Feed-Forward Loops regulated by Myc and characterized completely by experimentally supported regulatory interactions, in human. We then studied the statistical and functional properties of these circuits and discussed in more detail a few interesting examples involving E2F1, PTEN, RB1 and VEGF. CONCLUSIONS/SIGNIFICANCE: We have assembled and characterized a catalogue of human mixed Transcription Factor/microRNA Feed-Forward Loops, having Myc as master regulator and completely defined by experimentally verified regulatory interactions

    Functional Dicer Is Necessary for Appropriate Specification of Radial Glia during Early Development of Mouse Telencephalon

    Get PDF
    Early telencephalic development involves transformation of neuroepithelial stem cells into radial glia, which are themselves neuronal progenitors, around the time when the tissue begins to generate postmitotic neurons. To achieve this transformation, radial precursors express a specific combination of proteins. We investigate the hypothesis that micro RNAs regulate the ability of the early telencephalic progenitors to establish radial glia. We ablate functional Dicer, which is required for the generation of mature micro RNAs, by conditionally mutating the Dicer1 gene in the early embryonic telencephalon and analyse the molecular specification of radial glia as well as their progeny, namely postmitotic neurons and basal progenitors. Conditional mutation of Dicer1 from the telencephalon at around embryonic day 8 does not prevent morphological development of radial glia, but their expression of Nestin, Sox9, and ErbB2 is abnormally low. The population of basal progenitors, which are generated by the radial glia, is disorganised and expanded in Dicer1-/- dorsal telencephalon. While the proportion of cells expressing markers of postmitotic neurons is unchanged, their laminar organisation in the telencephalic wall is disrupted suggesting a defect in radial glial guided migration. We found that the laminar disruption could not be accounted for by a reduction of the population of Cajal Retzius neurons. Together, our data suggest novel roles for micro RNAs during early development of progenitor cells in the embryonic telencephalon

    Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis

    Get PDF
    The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing SREBP1 binding sites also suggest pathways for diabetes mellitus and rheumatoid arthritis, both diseases that contribute to increased cardiovascular disease in humans

    Quantifying sources of bias in longitudinal data linkage studies of child abuse and neglect: measuring impact of outcome specification, linkage error, and partial cohort follow-up

    No full text
    Abstract Background Health informatics projects combining statewide birth populations with child welfare records have emerged as a valuable approach to conducting longitudinal research of child maltreatment. The potential bias resulting from linkage misspecification, partial cohort follow-up, and outcome misclassification in these studies has been largely unexplored. This study integrated epidemiological survey and novel administrative data sources to establish the Alaska Longitudinal Child Abuse and Neglect Linkage (ALCANLink) project. Using these data we evaluated and quantified the impact of non-linkage misspecification and single source maltreatment ascertainment use on reported maltreatment risk and effect estimates. Methods The ALCANLink project integrates the 2009–2011 Alaska Pregnancy Risk Assessment Monitoring System (PRAMS) sample with multiple administrative databases through 2014, including one novel administrative source to track out-of-state emigration. For this project we limited our analysis to the 2009 PRAMS sample. We report on the impact of linkage quality, cohort follow-up, and multisource outcome ascertainment on the incidence proportion of reported maltreatment before age 6 and hazard ratios of selected characteristics that are often available in birth cohort linkage studies of maltreatment. Results Failure to account for out-of-state emigration biased the incidence proportion by 12% (from 28.3%w to 25.2%w), and the hazard ratio (HR) by as much as 33% for some risk factors. Overly restrictive linkage parameters biased the incidence proportion downwards by 43% and the HR by as much as 27% for some factors. Multi-source linkages, on the other hand, were of little benefit for improving reported maltreatment ascertainment. Conclusion Using the ALCANLink data which included a novel administrative data source, we were able to observe and quantify bias to both the incidence proportion and HR in a birth cohort linkage study of reported child maltreatment. Failure to account for out-of-state emigration and low-quality linkage methods may induce bias in longitudinal data linkage studies of child maltreatment which other researchers should be aware of. In this study multi-agency linkage did not lead to substantial increased detection of reported maltreatment. The ALCANLink methodology may be a practical approach for other states interested in developing longitudinal birth cohort linkage studies of maltreatment that requires limited resources to implement, provides comprehensive data elements, and can facilitate comparability between studies
    corecore