12 research outputs found

    Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia

    Get PDF
    Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML

    Cytoplasmic location of NR4A1 in aggressive lymphomas is associated with a favourable cancer specific survival

    Get PDF
    Abstract The nuclear orphan receptor NR4A1 functions as tumour suppressor in aggressive lymphomas by pro-apoptotic genomic and non-genomic effects. Here, we immunohistochemically studied the clinico-pathological relevance of NR4A1 protein expression patterns in a cohort of 60 diffuse large B cell lymphoma (DLBCL) patients and non-neoplastic lymph nodes. We observed a significant association between high cytoplasmic NR4A1 and favourable cancer-specific survival and the germinal centre B cell-like subtype, respectively. Moreover, the percentage of lymphoma cells exhibiting cytoplasmic NR4A1 significantly correlated to those showing cleaved caspase 3. Complementary, functional profiling using gene set enrichment of Reactome pathways based on publicly available microarray data was applied to determine pathways potentially implicated in cytoplasmic localization of NR4A1 and validated by means of semi quantitative real-time PCR. The pathway analysis revealed changes in the ERK1/2 pathway, and this was corroborated by the finding that high cytoplasmic NR4A1 was associated with higher expression of ERK1/2 targets in our cohort. These data indicate that high cytoplasmic NR4A1 is associated with a favourable lymphoma-specific survival and highlights the importance of NR4A1 expression patterns as potential prognostic marker for risk assessment in aggressive lymphomas
    corecore