14 research outputs found

    Recommendations for the analysis of individually randomised controlled trials with clustering in one arm - a case of continuous outcomes

    Get PDF
    BACKGROUND: In an individually randomised controlled trial where the treatment is delivered by a health professional it seems likely that the effectiveness of the treatment, independent of any treatment effect, could depend on the skill, training or even enthusiasm of the health professional delivering it. This may then lead to a potential clustering of the outcomes for patients treated by the same health professional, but similar clustering may not occur in the control arm. Using four case studies, we aim to provide practical guidance and recommendations for the analysis of trials with some element of clustering in one arm. METHODS: Five approaches to the analysis of outcomes from an individually randomised controlled trial with clustering in one arm are identified in the literature. Some of these methods are applied to four case studies of completed randomised controlled trials with clustering in one arm with sample sizes ranging from 56 to 539. Results are obtained using the statistical packages R and Stata and summarised using a forest plot. RESULTS: The intra-cluster correlation coefficient (ICC) for each of the case studies was small (<0.05) indicating little dependence on the outcomes related to cluster allocations. All models fitted produced similar results, including the simplest approach of ignoring clustering for the case studies considered. CONCLUSIONS: A partially clustered approach, modelling the clustering in just one arm, most accurately represents the trial design and provides valid results. Modelling homogeneous variances between the clustered and unclustered arm is adequate in scenarios similar to the case studies considered. We recommend treating each participant in the unclustered arm as a single cluster. This approach is simple to implement in R and Stata and is recommended for the analysis of trials with clustering in one arm only. However, the case studies considered had small ICC values, limiting the generalisability of these results

    An integrated approach to the biomechanics and motor control of cricket fast bowling techniques

    No full text
    To date, scientific investigations into the biomechanical aspects of cricket fast bowling techniques have predominantly focused on identifying the mechanical factors that may predispose fast bowlers to lower back injury with a relative paucity of research being conducted on the technical features that underpin proficient fast bowling performance. In this review paper, we critique the scientific literature examining fast bowling performance. We argue that, although many published investigations have provided some useful insights into the biomechanical factors that contribute to a high ball release speed and, to a lesser extent, bowling accuracy, this research has not made a substantive contribution to knowledge enhancement and has only had a very minor influence on coaching practice. To significantly enhance understanding of cricket fast bowling techniques and, therefore, have greater impact on practice, we recommend that future scientific research adopts an interdisciplinary focus, integrating biomechanical measurements with the analytical tools and concepts of dynamical systems motor control theory. The use of qualitative (topological) analysis techniques, in particular, promises to increase understanding of the coordinative movement patterns that define 'technique' in cricket fast bowling and potentially help distinguish between functional and dysfunctional aspects of technique for individual fast bowlers
    corecore