15 research outputs found

    The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework

    Get PDF
    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers

    Ecosystem services and integrity trend

    No full text
    Turton, SM ORCiD: 0000-0001-6279-7682Ecosystems are dynamic complexes of plant, animal, and microorganism communities, interacting with the nonliving environment (soils, water, minerals, air) in the form of functional units. These functional units occupy a diverse range of scales in the environment. Ecosystem services may be defined as goods and services from ecosystem structures and functions such as food, fiber, and fuel and climate regulation. These services have also been described as nature’s contributions to people, implying that humans are passive and active recipients of these services but rarely pay for them in any monetary sense. Ecosystem integrity may be defined as the system’s capacity to maintain structure and ecosystem functions using processes and components characteristic for its particular eco-region, i.e., an area where there are similar geographical characteristics, such as geology, vegetation, and climate. Ecosystem services integrity trend refers to changes in ecosystem goods and services, their ecosystem structures and functions, and hence their ability to provide food, fiber, and fuel and regulate climate. Human activities are the main drivers of changes in trends in ecosystem services and hence their integrity trend at different spatial and temporal scales. Social-ecological systems are complex adaptive systems composed of many diverse human and non-human entities that interact; these inherently linked systems adapt to changes in their environment, and their environment changes as a result
    corecore