47 research outputs found

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms

    Simulation of the diffusion features of point defects in bcc metals

    No full text
    This work is devoted to simulation of the diffusion features of point defects in bee metals. The properties of point defects have been investigated with the usage of many-body interatomic potentials. This approach, based on the density-functional theory, permitted us to derive more adequate diffusion features of solids. This investigation is carried out within the framework of the Finnis-Sinclair formalism, developed for an assembly of N atoms and represents the second-moment approximation of the tight-binding theory. We used a new model, based on the molecular static method for simulating the atomic structure near the defect and vacancy migration in pure metals. This approach gives the opportunity to simulate the formation and the migration volumes of the point defects, taking into consideration the influence of pressure on structure and consequently on energy. The diffusion characteristics of bee alpha-Fe and anomalous beta-Zr have been investigated
    corecore