50 research outputs found

    Tough nanoparticle-modified polymers

    No full text
    A crosslinked epoxy polymer has been modified by the addition of nano-silica particles. The particles were introduced via a sol-gel technique which gave a very well dispersed phase of nano-silica particles which were about 20 nm in diameter. The glass transition temperature was unchanged by the addition of the nanoparticles, but both the modulus and toughness were increased. The fracture energy, GIc, increased from 100 J/m 2 for the unmodified epoxy to 460 J/m2 for the epoxy with 20 wt. % of nano-silica. The microscopy studies showed evidence of debonding of the nanoparticles and subsequent plastic void growth of the epoxy polymer. A theoretical model of plastic void growth was used to confirm this mechanism. The cyclic-fatigue behaviour of the epoxy polymers has also been studied and the fatigue properties were clearly enhanced by the presence of the nano-silica particles. Indeed, it was found that the values of the strain-energy release rate at threshold, Gth, from the cyclic-fatigue tests increased steadily as the toughness, GIc, also increased, i.e. as the concentration of nano-silica particles was increased

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Biomass and Burning Characteristics of Sugar Pine Cones

    Get PDF
    We investigated the physical and burning characteristics of sugar pine (Pinus lambertiana Douglas) cones and their contribution to woody surface fuel loadings. Field sampling was conducted at the Yosemite Forest Dynamics Plot (YFDP), a 25.6 ha mapped study plot in Yosemite National Park, California, USA. We developed a classification system to describe sugar pine cones of different sizes and decay conditions, and examined differences among cone classes in biomass, bulk density, flame length, burning time, consumption, and relative contribution to surface fuel loads. Sugar pine cones comprised 601 kg ha-1 of surface fuels. Mature cones comprised 54% of cone biomass, and aborted juvenile cones accounted for 44%. Cone biomass, diameter, and bulk density differed among cone condition classes, as did burning characteristics (one-way ANOVA, P \u3c 0.001 in all cases). Flame lengths ranged from 5 cm to 94 cm for juvenile cones, and 71 cm to 150 cm for mature cones. Our results showed that the developmental stage at which sugar pine cones become surface fuels determines their potential contribution to surface fire behavior in Sierra Nevada mixed-conifer forests. Sugar pine cones burn with greater flame lengths and flame times than the cones of other North American fire-tolerant pine species studied to date, indicating that cones augment the surface fire regime of sugar pine forests, and likely do so to a greater degree than do cones of other pine species

    Lessons Learned from a Decade of Sudden Oak Death in California: Evaluating Local Management

    Get PDF
    Sudden Oak Death has been impacting California’s coastal forests for more than a decade. In that time, and in the absence of a centrally organized and coordinated set of mandatory management actions for this disease in California’s wildlands and open spaces, many local communities have initiated their own management programs. We present five case studies to explore how local-level management has attempted to control this disease. From these case studies, we glean three lessons: connections count, scale matters, and building capacity is crucial. These lessons may help management, research, and education planning for future pest and disease outbreaks
    corecore