6 research outputs found
Nonadditivity of critical Casimir forces
In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces
Membrane-mediated interactions
Interactions mediated by the cell membrane between inclusions, such as
membrane proteins or antimicrobial peptides, play important roles in their
biological activity. They also constitute a fascinating challenge for
physicists, since they test the boundaries of our understanding of
self-assembled lipid membranes, which are remarkable examples of
two-dimensional complex fluids. Inclusions can couple to various degrees of
freedom of the membrane, resulting in different types of interactions. In this
chapter, we review the membrane-mediated interactions that arise from direct
constraints imposed by inclusions on the shape of the membrane. These effects
are generic and do not depend on specific chemical interactions. Hence, they
can be studied using coarse-grained soft matter descriptions. We deal with
long-range membrane-mediated interactions due to the constraints imposed by
inclusions on membrane curvature and on its fluctuations. We also discuss the
shorter-range interactions that arise from the constraints on membrane
thickness imposed by inclusions presenting a hydrophobic mismatch with the
membrane.Comment: 38 pages, 10 figures, pre-submission version. In: Bassereau P., Sens
P. (eds) Physics of Biological Membranes. Springer, Cha