1,807 research outputs found
Femtosecond real-time probing of reactions. XI. The elementary OClO fragmentation
Femtosecond reaction dynamics of OClO in a supersonic molecular beam are reported. The system is excited to the A 2A2 state with a femtosecond pulse, covering a range of excitation in the symmetric stretch between v1=17 to v1=11 (308–352 nm). A time-delayed femtosecond probe pulse ionizes the OClO, and OClO + is detected. This ion has not been observed in previous experiments because of its ultrafast fragmentation. Transients are reported for the mass of the parent OClO as well as the mass of the ClO. Apparent biexponential decays are observed and related to the fragmentation dynamics: OClO+hnu-->(OClO)[double-dagger]*-->ClO+O -->Cl+O2 . Clusters of OClO with water (OClO)n (H2O)m with n from 1 to 3 and m from 0 to 3 are also observed. The dynamics of the fragmentation reveal the nuclear motions and the electronic coupling between surfaces. The time scale for bond breakage is in the range of 300–500 fs, depending on v1; surface crossing to form new intermediates is a pathway for the two channels of fragmentation: ClO+O (primary) and Cl+O2 (minor). Comparisons with results of ab initio calculations are made
Pediatric Automatic Sleep Staging: A comparative study of state-of-the-art deep learning methods.
Despite the tremendous progress recently made towards automatic sleep staging in adults, it is currently unknown if the most advanced algorithms generalize to the pediatric population, which displays distinctive characteristics in overnight polysomnography (PSG). To answer the question, in this work, we conduct a large-scale comparative study on the state-of-the-art deep learning methods for pediatric automatic sleep staging. Six different deep neural networks with diverging features are adopted to evaluate a sample of more than 1,200 children across a wide spectrum of obstructive sleep apnea (OSA) severity. Our experimental results show that the individual performance of automated pediatric sleep stagers when evaluated on new subjects is equivalent to the expert-level one reported on adults. Combining the six stagers into ensemble models further boosts the staging accuracy, reaching an overall accuracy of 88.8%, a Cohens kappa of 0.852, and a macro F1-score of 85.8%. At the same time, the ensemble models lead to reduced predictive uncertainty. The results also show that the studied algorithms and their ensembles are robust to concept drift when the training and test data were recorded seven months apart and after clinical intervention. However, we show that the improvements in the staging performance are not necessarily clinically significant although the ensemble models lead to more favorable clinical measures than the six standalone models. Detailed analyses further demonstrate "almost perfect" agreement between the automatic stagers to one another and their similar patterns on the staging errors, suggesting little room for improvement
Complete Solving for Explicit Evaluation of Gauss Sums in the Index 2 Case
Let be a prime number, for some positive integer , be a
positive integer such that , and let \k be a primitive
multiplicative character of order over finite field \fq. This paper
studies the problem of explicit evaluation of Gauss sums in "\textsl{index 2
case}" (i.e. f=\f{\p(N)}{2}=[\zn:\pp], where \p(\cd) is Euler function).
Firstly, the classification of the Gauss sums in index 2 case is presented.
Then, the explicit evaluation of Gauss sums G(\k^\la) (1\laN-1) in index 2
case with order being general even integer (i.e. N=2^{r}\cd N_0 where
are positive integers and is odd.) is obtained. Thus, the
problem of explicit evaluation of Gauss sums in index 2 case is completely
solved
Gene-Gene Interaction between APOA5 and USF1: Two Candidate Genes for the Metabolic Syndrome
Objective: The metabolic syndrome, a major cluster of risk factors for cardiovascular diseases, shows increasing prevalence worldwide. Several studies have established associations of both apolipoprotein A5 (APOA5) gene variants and upstream stimulatory factor 1 (USF1) gene variants with blood lipid levels and metabolic syndrome. USF1 is a transcription factor for APOA5. Methods: We investigated a possible interaction between these two genes on the risk for the metabolic syndrome, using data from the German population-based KORA survey 4 (1,622 men and women aged 55-74 years). Seven APOA5 single nucleotide polymorphisms (SNPs) were analyzed in combination with six USF1 SNPs, applying logistic regression in an additive model adjusting for age and sex and the definition for metabolic syndrome from the National Cholesterol Education Program's Adult Treatment Panel III (NCEP (AIII)) including medication. Results: The overall prevalence for metabolic syndrome was 41%. Two SNP combinations showed a nominal gene-gene interaction (p values 0.024 and 0.047). The effect of one SNP was modified by the other SNP, with a lower risk for the metabolic syndrome with odds ratios (ORs) between 0.33 (95% CI = 0.13-0.83) and 0.40 (95% CI = 0.15-1.12) when the other SNP was homozygous for the minor allele. Nevertheless, none of the associations remained significant after correction for multiple testing. Conclusion: Thus, there is an indication of an interaction between APOA5 and USF1 on the risk for metabolic syndrome
Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells
Exocytosis of secretory granules by adrenal chromaffin cells is blocked by the tetanus toxin light chain in a zinc specific manner. Here we show that cellular synaptobrevin is almost completely degraded by the tetanus toxin light chain within 15 min. We used highly purified adrenal secretory granules to show that synaptobrevin, which can be cleaved by the tetanus toxin light chain, is localized in the vesicular membrane. Proteolysis of synaptobrevin in cells and in secretory granules is reversibly inhibited by the zinc chelating agent dipicolinic acid. Moreover, cleavage of synaptobrevin present in secretory granules by the tetanus toxin light chain is blocked by the zinc peptidase inhibitor captopril and by synaptobrevin derived peptides. Our data indicate that the tetanus toxin light chain acts as a zinc dependent protease that cleaves synaptobrevin of secretory granules, an essential component of the exocytosis machinery in adrenal chromaffin cells
Adaptive Dispersion Compensation for Remote Fiber Delivery of NIR Femtosecond Pulses
We report on remote delivery of 25 pJ broadband near-infrared femtosecond
light pulses from a Ti:sapphire laser through 150 meters of single-mode optical
fiber. Pulse distortion due to dispersion is overcome with pre-compensation
using adaptive pulse shaping techniques, while nonlinearities are mitigated
using an SF10 rod for the final stage of pulse compression. Near transform
limited pulse duration of 130 fs is measured after the final compression.Comment: 3 pages, 4 figure
Coherent Optimal Control of Multiphoton Molecular Excitation
We give a framework for molecular multiphoton excitation process induced by
an optimally designed electric field. The molecule is initially prepared in a
coherent superposition state of two of its eigenfunctions. The relative phase
of the two superposed eigenfunctions has been shown to control the optimally
designed electric field which triggers the multiphoton excitation in the
molecule. This brings forth flexibility in desiging the optimal field in the
laboratory by suitably tuning the molecular phase and hence by choosing the
most favorable interfering routes that the system follows to reach the target.
We follow the quantum fluid dynamical formulation for desiging the electric
field with application to HBr molecule.Comment: 5 figure
Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse
We present a joint experimental and theoretical study on strong-field
photo-ionization of sodium atoms using chirped femtosecond laser pulses. By
tuning the chirp parameter, selectivity among the population in the highly
excited states 5p, 6p, 7p and 5f, 6f is achieved. Different excitation pathways
enabling control are identified by simultaneous ionization and measurement of
photoelectron angular distributions employing the velocity map imaging
technique. Free electron wave packets at an energy of around 1 eV are observed.
These photoelectrons originate from two channels. The predominant 2+1+1
Resonance Enhanced Multi-Photon Ionization (REMPI) proceeds via the strongly
driven two-photon transition , and subsequent
ionization from the states 5p, 6p and 7p whereas the second pathway involves
3+1 REMPI via the states 5f and 6f. In addition, electron wave packets from
two-photon ionization of the non-resonant transiently populated state 3p are
observed close to the ionization threshold. A mainly qualitative five-state
model for the predominant excitation channel is studied theoretically to
provide insights into the physical mechanisms at play. Our analysis shows that
by tuning the chirp parameter the dynamics is effectively controlled by dynamic
Stark-shifts and level crossings. In particular, we show that under the
experimental conditions the passage through an uncommon three-state "bow-tie"
level crossing allows the preparation of coherent superposition states
Conditions of bankig crediting of physical persons by the countries of the ЕАЕU
The main creditor of the population today is the banking sector. At the same time, experts are increasingly concerned about the deterioration in the quality of retail portfolios. As a result, banks should take into account all factors that contribute to a slowdown in the growth of consumer lending, and develop a unified strategy that overcomes the obstacles, as well as leading to a positive dynamics in the consumer lending market
- …